1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Way out there: pathogens, health, and condition of overwintering salmon in the Gulf of Alaska

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Salmon are keystone species across the North Pacific, supporting ecosystems, commercial opportunities, and cultural identity. Nevertheless, many wild salmon stocks have experienced significant declines. Salmon restoration efforts focus on fresh and coastal waters, but little is known about the open ocean environment. Here we use high throughput RT-qPCR tools to provide the first report on the health, condition, and infection profile of coho, chum, pink, and sockeye salmon in the Gulf of Alaska during the 2019 winter. We found lower infectious agent number, diversity, and burden compared with coastal British Columbia in all species except coho, which exhibited elevated stock-specific infection profiles. We identified Loma sp. and Ichthyophonus hoferi as key pathogens, suggesting transmission in the open ocean. Reduced prey availability, potentially linked to change in ocean conditions due to an El Niño event, correlated with energetic deficits and immunosuppression in salmon. Immunosuppressed individuals showed higher relative infection burden and higher prevalence of opportunistic pathogens. We highlight the cumulative effects of infection and environmental stressors on overwintering salmon, establishing a baseline to document the impacts of a changing ocean on salmon.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complex heatmaps reveal patterns and correlations in multidimensional genomic data.

            Parallel heatmaps with carefully designed annotation graphics are powerful for efficient visualization of patterns and relationships among high dimensional genomic data. Here we present the ComplexHeatmap package that provides rich functionalities for customizing heatmaps, arranging multiple parallel heatmaps and including user-defined annotation graphics. We demonstrate the power of ComplexHeatmap to easily reveal patterns and correlations among multiple sources of information with four real-world datasets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression.

              Nutritional deprivation suppresses immune function. The cloning of the obese gene and identification of its protein product leptin has provided fundamental insight into the hypothalamic regulation of body weight. Circulating levels of this adipocyte-derived hormone are proportional to fat mass but maybe lowered rapidly by fasting or increased by inflammatory mediators. The impaired T-cell immunity of mice now known to be defective in leptin (ob/ob) or its receptor (db/db), has never been explained. Impaired cell-mediated immunity and reduced levels of leptin are both features of low body weight in humans. Indeed, malnutrition predisposes to death from infectious diseases. We report here that leptin has a specific effect on T-lymphocyte responses, differentially regulating the proliferation of naive and memory T cells. Leptin increased Th1 and suppressed Th2 cytokine production. Administration of leptin to mice reversed the immunosuppressive effects of acute starvation. Our findings suggest a new role for leptin in linking nutritional status to cognate cellular immune function, and provide a molecular mechanism to account for the immune dysfunction observed in starvation.
                Bookmark

                Author and article information

                Journal
                FACETS
                FACETS
                Canadian Science Publishing
                2371-1671
                January 01 2022
                January 01 2022
                : 7
                : 247-285
                Affiliations
                [1 ]Department of Forest & Conservation Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
                [2 ]Pacific Salmon Foundation, Vancouver, BC V6J 4S6, Canada
                [3 ]Pacific branch of VNIRO (“TINRO”), Vladivostok, Russia 690091
                [4 ]Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC V9T 6N7, Canada
                [5 ]Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
                Article
                10.1139/facets-2021-0052
                79e2ca20-a415-47ad-b360-816fcfe92910
                © 2022

                http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining

                History

                Comments

                Comment on this article