6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Tug of War: DNA-Sensing Antiviral Innate Immunity and Herpes Simplex Virus Type I Infection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cytosolic DNA sensors are the most recently described class of pattern recognition receptors (PRRs), which induce the production of type I interferons (IFN-I) and trigger the induction of a rapid and efficient innate immune response. Herpes simplex virus type I (HSV-1), a typical DNA virus, has displayed the ability to manipulate and evade host antiviral innate immune responses. Therefore, with an aim to highlight IFN-I-mediated innate immune response in a battle against viral infection, we have summarized the current understandings of DNA-sensing signal pathways and the most recent findings on the molecular mechanisms utilized by HSV-1 to counteract antiviral immune responses. A comprehensive understanding of the interplay between HSV-1 and host early antiviral immune responses will contribute to the development of novel therapies and vaccines in the future.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Triggering the interferon antiviral response through an IKK-related pathway.

          Rapid induction of type I interferon expression, a central event in establishing the innate antiviral response, requires cooperative activation of numerous transcription factors. Although signaling pathways that activate the transcription factors nuclear factor kappaB and ATF-2/c-Jun have been well characterized, activation of the interferon regulatory factors IRF-3 and IRF-7 has remained a critical missing link in understanding interferon signaling. We report here that the IkappaB kinase (IKK)-related kinases IKKepsilon and TANK-binding kinase 1 are components of the virus-activated kinase that phosphorylate IRF-3 and IRF-7. These studies illustrate an essential role for an IKK-related kinase pathway in triggering the host antiviral response to viral infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interferon-Stimulated Genes: What Do They All Do?

            In the absence of an intact interferon (IFN) response, mammals may be susceptible to lethal viral infection. IFNs are secreted cytokines that activate a signal transduction cascade leading to the induction of hundreds of interferon-stimulated genes (ISGs). Remarkably, approximately 10% of the genes in the human genome have the potential to be regulated by IFNs. What do all of these genes do? It is a complex question without a simple answer. From decades of research, we know that many of the protein products encoded by these ISGs work alone or in concert to achieve one or more cellular outcomes, including cell intrinsic antiviral defense, antiproliferative activities, and stimulation of adaptive immunity. The focus of this review is the antiviral activities of the IFN/ISG system. This includes general paradigms of ISG function, supported by specific examples in the literature, as well as methodologies to identify and characterize ISG function. Expected final online publication date for the Annual Review of Virology Volume 6 is September 30, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response.

              Microbial nucleic acids are critical for the induction of innate immune responses, a host defense mechanism against infection by microbes. Recent studies have indicated that double-stranded DNA (dsDNA) induces potent innate immune responses via the induction of type I IFN (IFN) and IFN-inducible genes. However, the regulatory mechanisms underlying dsDNA-triggered signaling are not fully understood. Here we show that the translocation and assembly of the essential signal transducers, stimulator of IFN genes (STING) and TANK-binding kinase 1 (TBK1), are required for dsDNA-triggered innate immune responses. After sensing dsDNA, STING moves from the endoplasmic reticulum (ER) to the Golgi apparatus and finally reaches the cytoplasmic punctate structures to assemble with TBK1. The addition of an ER-retention signal to the C terminus of STING dampens its ability to induce antiviral responses. We also show that STING co-localizes with the autophagy proteins, microtubule-associated protein 1 light chain 3 (LC3) and autophagy-related gene 9a (Atg9a), after dsDNA stimulation. The loss of Atg9a, but not that of another autophagy-related gene (Atg7), greatly enhances the assembly of STING and TBK1 by dsDNA, leading to aberrant activation of the innate immune response. Hence Atg9a functions as a regulator of innate immunity following dsDNA stimulation as well as an essential autophagy protein. These results demonstrate that dynamic membrane traffic mediates the sequential translocation and assembly of STING, both of which are essential processes required for maximal activation of the innate immune response triggered by dsDNA.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                26 November 2019
                2019
                : 10
                : 2627
                Affiliations
                [1] 1Department of Immunology, School of Basic Medical Sciences, Fujian Medical University , Fuzhou, China
                [2] 2Department of Microbiology, Immunology and Infectious Diseases, University of Calgary , Calgary, AB, Canada
                Author notes

                Edited by: Soren R. Paludan, Aarhus University, Denmark

                Reviewed by: Malathi Krishnamurthy, University of Toledo, United States; Junji Xing, Houston Methodist Research Institute, United States

                *Correspondence: Chunfu Zheng, zheng.alan@ 123456hotmail.com

                This article was submitted to Virology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.02627
                6901958
                31849849
                7a14737a-b943-402a-86e6-9adb71fc4722
                Copyright © 2019 Lin and Zheng.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 July 2019
                : 29 October 2019
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 115, Pages: 9, Words: 7975
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81602498
                Funded by: Natural Science Foundation of Fujian Province 10.13039/501100003392
                Award ID: 2018J01830
                Funded by: MiaoPu Foundation of Fujian Medical University
                Award ID: 2015MP037
                Categories
                Microbiology
                Review

                Microbiology & Virology
                herpes simplex virus type i,dna sensor,immune evasion,interferon,antiviral immunity

                Comments

                Comment on this article