7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Cardiovascular Pharmacology - Endothelial Control 

      TP Receptors and Oxidative Stress

      edited_book

      Read this book at

      Publisher
      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.

          Despite its very potent vasodilating action in vivo, acetylcholine (ACh) does not always produce relaxation of isolated preparations of blood vessels in vitro. For example, in the helical strip of the rabbit descending thoracic aorta, the only reported response to ACh has been graded contractions, occurring at concentrations above 0.1 muM and mediated by muscarinic receptors. Recently, we observed that in a ring preparation from the rabbit thoracic aorta, ACh produced marked relaxation at concentrations lower than those required to produce contraction (confirming an earlier report by Jelliffe). In investigating this apparent discrepancy, we discovered that the loss of relaxation of ACh in the case of the strip was the result of unintentional rubbing of its intimal surface against foreign surfaces during its preparation. If care was taken to avoid rubbing of the intimal surface during preparation, the tissue, whether ring, transverse strip or helical strip, always exhibited relaxation to ACh, and the possibility was considered that rubbing of the intimal surface had removed endothelial cells. We demonstrate here that relaxation of isolated preparations of rabbit thoracic aorta and other blood vessels by ACh requires the presence of endothelial cells, and that ACh, acting on muscarinic receptors of these cells, stimulates release of a substance(s) that causes relaxation of the vascular smooth muscle. We propose that this may be one of the principal mechanisms for ACh-induced vasodilation in vivo. Preliminary reports on some aspects of the work have been reported elsewhere.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture).

            Endothelial cells synthesize and release various factors that regulate angiogenesis, inflammatory responses, hemostasis, as well as vascular tone and permeability. Endothelial dysfunction has been associated with a number of pathophysiological processes. Oxidative stress appears to be a common denominator underlying endothelial dysfunction in cardiovascular diseases. However, depending on the pathology, the vascular bed studied, the stimulant, and additional factors such as age, sex, salt intake, cholesterolemia, glycemia, and hyperhomocysteinemia, the mechanisms underlying the endothelial dysfunction can be markedly different. A reduced bioavailability of nitric oxide (NO), an alteration in the production of prostanoids, including prostacyclin, thromboxane A2, and/or isoprostanes, an impairment of endothelium-dependent hyperpolarization, as well as an increased release of endothelin-1, can individually or in association contribute to endothelial dysfunction. Therapeutic interventions do not necessarily restore a proper endothelial function and, when they do, may improve only part of these variables.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of prostacyclin in the cardiovascular response to thromboxane A2.

              Thromboxane (Tx) A2 is a vasoconstrictor and platelet agonist. Aspirin affords cardioprotection through inhibition of TxA2 formation by platelet cyclooxygenase (COX-1). Prostacyclin (PGI2) is a vasodilator that inhibits platelet function. Here we show that injury-induced vascular proliferation and platelet activation are enhanced in mice that are genetically deficient in the PGI2 receptor (IP) but are depressed in mice genetically deficient in the TxA2 receptor (TP) or treated with a TP antagonist. The augmented response to vascular injury was abolished in mice deficient in both receptors. Thus, PGI2 modulates platelet-vascular interactions in vivo and specifically limits the response to TxA2. This interplay may help explain the adverse cardiovascular effects associated with selective COX-2 inhibitors, which, unlike aspirin and nonsteroidal anti-inflammatory drugs (NSAIDs), inhibit PGI2 but not TxA2.
                Bookmark

                Author and book information

                Book Chapter
                2010
                : 85-106
                10.1016/B978-0-12-385061-4.00004-0
                7a330ccb-a27f-4065-a8d2-f2babd288bc9
                History

                Comments

                Comment on this book

                Book chapters

                Similar content4,073

                Cited by6