15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evaluation of the Oxidative Effect of Long-Term Repetitive Hyperbaric Oxygen Exposures on Different Brain Regions of Rats

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperbaric oxygen (HBO 2) exposure affects both oxidative and antioxidant systems. This effect is positively correlated with the exposure time and duration of the treatment. The present study aims enlightening the relation of HBO 2 with oxidative/antioxidant systems when administered in a prolonged and repetitive manner in brain tissues of rats. Sixty rats were divided into 6 study ( n = 8 for each) and 1 control ( n = 12) group. Rats in the study groups were daily exposed 90-min HBO 2 sessions at 2.8 ATA for 5, 10, 15, 20, 30 and 40 days. One day after the last session, animals were sacrificed; their whole brain tissue was harvested and dissected into three different regions as the outer grey matter (cortex), the inner white matter and cerebellum. Levels of lipid peroxidation and protein oxidation and activities of superoxide dismutase and glutathione peroxidase were measured in these tissues. Malondialdehyde, carbonylated protein and glutathione peroxidase levels were found to be insignificantly increased at different time-points in the cerebral cortex, inner white matter and cerebellum, respectively. These comparable results provide evidence for the safety of HBO treatments and/or successful adaptive mechanisms at least in the brain tissue of rats, even when administered for longer periods.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          A simple method for clinical assay of superoxide dismutase.

          This assay for superoxide dismutase (SOD, EC 1.15.1.1) activity involves inhibition of nitroblue tetrazolium reduction, with xanthine-xanthine oxidase used as a superoxide generator. By using a reaction terminator, we can determine 40 samples within 55 min. One unit of activity of pure bovine liver Cu,ZnSOD and chicken liver MnSOD was expressed by 30 ng and 500 ng of protein, respectively. The mean concentrations of Cu,ZnSOD as measured by this method in blood from normal adults were 242 (SEM 4) mg/L in erythrocytes, 548 (SEM 20) micrograms/L in serum, and 173 (SEM 11) micrograms/L in plasma. The Cu,ZnSOD concentrations in serum and plasma of patients with cancer of the large intestine tended to be less and greater than these values, respectively, but not statistically significantly so.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Determination of carbonyl content in oxidatively modified proteins.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complications and side effects of hyperbaric oxygen therapy.

              Despite ongoing controversy, hyperbaric oxygen (HBO) therapy is frequently administered in various clinical situations. Probably because of the unique atmospheric conditions to which the patient is exposed, there are concerns about the safety aspects of this therapy. Possible complications during HBO therapy include barotraumatic lesions (middle ear, nasal sinuses, inner ear, lung, teeth), oxygen toxicity (central nervous system, lung), confinement anxiety, and ocular effects (myopia, cataract growth). To analyze the medical safety of HBO therapy, this report reviewed complications and side effects of 782 patients treated for various indications with a total of 11,376 HBO therapy sessions within a multiplace chamber. The absolute treatment pressure was 240 or 250 kPa 114 or 15 msw). The compression was performed in a linear manner with 14 to 15 kPa (1.4 to 1.5 msw) x min(-1). All data were gathered prospectively within a special database. More than 17% of all patients experienced ear pain or discomfort as an expression of problems in equalizing the middle ear pressure. Most episodes were not related to a persistent eustachian tube dysfunction since they only occurred once. Barotraumatic lesions on visual otological examinations (ear microscopy) were verified in 3.8% of all patients. Patients with sensory deficits involving the ear region need special attention, because they seem to be at risk for rupture of the tympanic membrane (three cases documented). A barotrauma of the nasal sinuses occurred rarely and no barotraumatic lesions of the inner ear, lung, or teeth were noted. Oxygen toxicity of the CNS manifested by generalized seizures affected four patients without any recognizable risk factors or prodromes. None of the patients suffered recurrences or sequelae. Regular checks of the blood glucose in diabetics failed to reveal episodes of hypoglycemia as a cause for seizures. Lung function tests of patients undergoing prolonged treatment (average 52.8 sessions) did not deteriorate. Patients scheduled for HBO therapy need a careful pre-examination and monitoring. If safety guidelines are strictly followed, HBO therapy is a modality with an acceptable rate of complications. The predominant complication is represented by pressure equalization problems within the middle ear. Serious complications rarely occur.
                Bookmark

                Author and article information

                Journal
                ScientificWorldJournal
                ScientificWorldJournal
                TSWJ
                The Scientific World Journal
                The Scientific World Journal
                1537-744X
                2012
                2 February 2012
                : 2012
                : 849183
                Affiliations
                1Department of Undersea and Hyperbaric Medicine, Gulhane Military Medical Academy, 06010 Etlik, Ankara, Turkey
                2Department of Physiology, Gulhane Military Medical Academy, 06010 Etlik, Ankara, Turkey
                3Department of Emergency Medicine, Gulhane Military Medical Academy, 06010 Etlik, Ankara, Turkey
                4Department of Internal Medicine, Gulhane Military Medical Academy, 06010 Etlik, Ankara, Turkey
                5Health Service Command, Turkish Armed Forces, 06790 Etimesgut, Ankara, Turkey
                Author notes

                Academic Editors: G. Frosina and J. León

                Article
                10.1100/2012/849183
                3289899
                22454610
                7a55d66c-89be-42c6-a30c-8bf5e3aaa367
                Copyright © 2012 Kemal Simsek et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 October 2011
                : 11 December 2011
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article