17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epilepsy, a common multifactorial neurological disease, affects about 69 million people worldwide constituting nearly 1% of the world population. Despite decades of extensive research on understanding its underlying mechanism and developing the pharmacological treatment, very little is known about the biological alterations leading to epileptogenesis. Due to this gap, the currently available antiepileptic drug therapy is symptomatic in nature and is ineffective in 30% of the cases. Mounting evidences revealed the pathophysiological role of neuroinflammation in epilepsy which has shifted the focus of epilepsy researchers towards the development of neuroinflammation-targeted therapeutics for epilepsy management. Markedly increased expression of key inflammatory mediators in the brain and blood-brain barrier may affect neuronal function and excitability and thus may increase seizure susceptibility in preclinical and clinical settings. Cyclooxygenase-2 (COX-2), an enzyme synthesizing the proinflammatory mediators, prostaglandins, has widely been reported to be induced during seizures and is considered to be a potential neurotherapeutic target for epilepsy management. However, the efficacy of such therapy involving COX-2 inhibition depends on various factors viz., therapeutic dose, time of administration, treatment duration, and selectivity of COX-2 inhibitors. This article reviews the preclinical and clinical evidences supporting the role of COX-2 in seizure-associated neuroinflammation in epilepsy and the potential clinical use of COX-2 inhibitors as a future strategy for epilepsy treatment.

          Related collections

          Most cited references142

          • Record: found
          • Abstract: found
          • Article: not found

          The consequences of refractory epilepsy and its treatment.

          Seizures in some 30% to 40% of patients with epilepsy fail to respond to antiepileptic drugs or other treatments. While much has been made of the risks of new drug therapies, not enough attention has been given to the risks of uncontrolled and progressive epilepsy. This critical review summarizes known risks associated with refractory epilepsy, provides practical clinical recommendations, and indicates areas for future research. Eight international epilepsy experts from Europe, the United States, and South America met on May 4, 2013, to present, review, and discuss relevant concepts, data, and literature on the consequences of refractory epilepsy. While patients with refractory epilepsy represent the minority of the population with epilepsy, they require the overwhelming majority of time, effort, and focus from treating physicians. They also represent the greatest economic and psychosocial burdens. Diagnostic procedures and medical/surgical treatments are not without risks. Overlooked, however, is that these risks are usually smaller than the risks of long-term, uncontrolled seizures. Refractory epilepsy may be progressive, carrying risks of structural damage to the brain and nervous system, comorbidities (osteoporosis, fractures), and increased mortality (from suicide, accidents, sudden unexpected death in epilepsy, pneumonia, vascular disease), as well as psychological (depression, anxiety), educational, social (stigma, driving), and vocational consequences. Adding to this burden is neuropsychiatric impairment caused by underlying epileptogenic processes ("essential comorbidities"), which appears to be independent of the effects of ongoing seizures themselves. Tolerating persistent seizures or chronic medicinal adverse effects has risks and consequences that often outweigh risks of seemingly "more aggressive" treatments. Future research should focus not only on controlling seizures but also on preventing these consequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cyclooxygenases: structural and functional insights.

            Cyclooxygenase (COX; prostaglandin G/H synthase, EC 1.14.99.1) catalyzes the first two steps in the biosynthesis of prostaglandins (PGs). The two COX isoforms COX-1 and COX-2 are the targets of the widely used nonsteroidal anti-inflammatory drugs, indicating a role for these enzymes in pain, fever, inflammation, and tumorigenesis. The ubiquitous constitutive expression of COX-1 and inducible expression of COX-2 have led to the widely held belief that COX-1 produces homeostatic PGs, while PGs produced by COX-2 are primarily pathophysiological. However, recent discoveries call this paradigm into question and reveal as yet underappreciated functions for both enzymes. This review focuses on some of these new insights.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New avenues for anti-epileptic drug discovery and development.

              Despite the introduction of over 15 third-generation anti-epileptic drugs, current medications fail to control seizures in 20-30% of patients. However, our understanding of the mechanisms mediating the development of epilepsy and the causes of drug resistance has grown substantially over the past decade, providing opportunities for the discovery and development of more efficacious anti-epileptic and anti-epileptogenic drugs. In this Review we discuss how previous preclinical models and clinical trial designs may have hampered the discovery of better treatments. We propose that future anti-epileptic drug development may be improved through a new joint endeavour between academia and the industry, through the identification and application of tools for new target-driven approaches, and through comparative preclinical proof-of-concept studies and innovative clinical trials designs.
                Bookmark

                Author and article information

                Contributors
                chitrarawat11@gmail.com
                samiksha@igib.in
                ujjwal.ranjan@igib.in
                + 91 11 27662202 , ritus@igib.in
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                30 October 2019
                30 October 2019
                2019
                : 16
                : 197
                Affiliations
                [1 ]GRID grid.418099.d, Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), , Council of Scientific and Industrial Research (CSIR), ; Mall Road, Delhi, 110007 India
                [2 ]GRID grid.418099.d, Academy of Scientific and Innovative Research (AcSIR), , Council of Scientific and Industrial Research (CSIR), ; Delhi, India
                Article
                1592
                10.1186/s12974-019-1592-3
                6822425
                31666079
                7a69dd30-05d5-467a-894b-bba395d5d1e4
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 29 November 2018
                : 23 September 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001412, Council of Scientific and Industrial Research;
                Award ID: MLP1804
                Categories
                Review
                Custom metadata
                © The Author(s) 2019

                Neurosciences
                cyclooxygenase-2 (cox-2),seizure,epilepsy,inflammation,blood-brain barrier (bbb),anticonvulsant,adjunctive

                Comments

                Comment on this article