3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of Immediate Release Tablets Containing Calcium Lactate Synthetized from Black Sea Mussel Shells

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nowadays, the use of marine by-products as precursor materials has gained great interest in the extraction and production of chemical compounds with suitable properties and possible pharmaceutical applications. The present paper presents the development of a new immediate release tablet containing calcium lactate obtained from Black Sea mussel shells. Compared with other calcium salts, calcium lactate has good solubility and bioavailability. In the pharmaceutical preparations, calcium lactate was extensively utilized as a calcium source for preventing and treating calcium deficiencies. The physical and chemical characteristics of synthesized calcium lactate were evaluated using Fourier Transform Infrared Spectroscopy, X-ray diffraction analysis and thermal analysis. Further, the various pharmacotechnical properties of the calcium lactate obtained from mussel shells were determined in comparison with an industrial used direct compressible Calcium lactate DC (PURACAL®). The obtained results suggest that mussel shell by-products are suitable for the development of chemical compounds with potential applications in the pharmaceutical domain.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Modeling and comparison of dissolution profiles.

          Over recent years, drug release/dissolution from solid pharmaceutical dosage forms has been the subject of intense and profitable scientific developments. Whenever a new solid dosage form is developed or produced, it is necessary to ensure that drug dissolution occurs in an appropriate manner. The pharmaceutical industry and the registration authorities do focus, nowadays, on drug dissolution studies. The quantitative analysis of the values obtained in dissolution/release tests is easier when mathematical formulas that express the dissolution results as a function of some of the dosage forms characteristics are used. In some cases, these mathematic models are derived from the theoretical analysis of the occurring process. In most of the cases the theoretical concept does not exist and some empirical equations have proved to be more appropriate. Drug dissolution from solid dosage forms has been described by kinetic models in which the dissolved amount of drug (Q) is a function of the test time, t or Q=f(t). Some analytical definitions of the Q(t) function are commonly used, such as zero order, first order, Hixson-Crowell, Weibull, Higuchi, Baker-Lonsdale, Korsmeyer-Peppas and Hopfenberg models. Other release parameters, such as dissolution time (tx%), assay time (tx min), dissolution efficacy (ED), difference factor (f1), similarity factor (f2) and Rescigno index (xi1 and xi2) can be used to characterize drug dissolution/release profiles.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Sustainability: Don't waste seafood waste.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Future of Pharmaceutical Manufacturing Sciences

              The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial‐scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state‐of‐art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular‐based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot‐melt processing and printing‐based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3612–3638, 2015
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MDARE6
                Marine Drugs
                Marine Drugs
                MDPI AG
                1660-3397
                January 2022
                January 02 2022
                : 20
                : 1
                : 45
                Article
                10.3390/md20010045
                35049900
                7a9b9329-d030-45c4-9863-dd75c3c910e3
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article