5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fully Conjugated Donor–Acceptor Covalent Organic Frameworks for Photocatalytic Oxidative Amine Coupling and Thioamide Cyclization

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Generation and Detection of Reactive Oxygen Species in Photocatalysis.

          The detection methods and generation mechanisms of the intrinsic reactive oxygen species (ROS), i.e., superoxide anion radical (•O2-), hydrogen peroxide (H2O2), singlet oxygen (1O2), and hydroxyl radical (•OH) in photocatalysis, were surveyed comprehensively. Consequently, the major photocatalyst used in heterogeneous photocatalytic systems was found to be TiO2. However, besides TiO2 some representative photocatalysts were also involved in the discussion. Among the various issues we focused on the detection methods and generation reactions of ROS in the aqueous suspensions of photocatalysts. On the careful account of the experimental results presented so far, we proposed the following apprehension: adsorbed •OH could be regarded as trapped holes, which are involved in a rapid adsorption-desorption equilibrium at the TiO2-solution interface. Because the equilibrium shifts to the adsorption side, trapped holes must be actually the dominant oxidation species whereas •OH in solution would exert the reactivity mainly for nonadsorbed reactants. The most probable routes of generating intrinsic ROS at the surfaces of two polymorphs of TiO2, anatase and rutile, were discussed along with some plausible rational reaction processes. In addition to the four major ROS, three ROS, that is organic peroxides, ozone, and nitric oxide, which are less common in photocatalysis are also briefly reviewed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polymeric photocatalysts based on graphitic carbon nitride.

            Semiconductor-based photocatalysis is considered to be an attractive way for solving the worldwide energy shortage and environmental pollution issues. Since the pioneering work in 2009 on graphitic carbon nitride (g-C3N4) for visible-light photocatalytic water splitting, g-C3N4 -based photocatalysis has become a very hot research topic. This review summarizes the recent progress regarding the design and preparation of g-C3N4 -based photocatalysts, including the fabrication and nanostructure design of pristine g-C3N4 , bandgap engineering through atomic-level doping and molecular-level modification, and the preparation of g-C3N4 -based semiconductor composites. Also, the photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal cocatalysts, and Z-scheme heterojunctions. Finally, the concluding remarks are presented and some perspectives regarding the future development of g-C3N4 -based photocatalysts are highlighted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Covalent organic frameworks (COFs): from design to applications.

              Covalent organic frameworks (COFs) represent an exciting new type of porous organic materials, which are ingeniously constructed with organic building units via strong covalent bonds. The well-defined crystalline porous structures together with tailored functionalities have offered the COF materials superior potential in diverse applications, such as gas storage, adsorption, optoelectricity, and catalysis. Since the seminal work of Yaghi and co-workers in 2005, the rapid development in this research area has attracted intensive interest from researchers with diverse expertise. This critical review describes the state-of-the-art development in the design, synthesis, characterisation, and application of the crystalline porous COF materials. Our own opinions on further development of the COF materials are also presented for discussion (155 references).
                Bookmark

                Author and article information

                Contributors
                Journal
                ACS Catalysis
                ACS Catal.
                American Chemical Society (ACS)
                2155-5435
                2155-5435
                August 07 2020
                July 10 2020
                August 07 2020
                : 10
                : 15
                : 8717-8726
                Affiliations
                [1 ]Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
                Article
                10.1021/acscatal.0c01242
                7aa8dbcc-7f4e-4fa5-8c47-a9408bd728c7
                © 2020

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article