98
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inferring patient to patient transmission of Mycobacterium tuberculosis from whole genome sequencing data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mycobacterium tuberculosis is characterised by limited genomic diversity, which makes the application of whole genome sequencing particularly attractive for clinical and epidemiological investigation. However, in order to confidently infer transmission events, an accurate knowledge of the rate of change in the genome over relevant timescales is required.

          Methods

          We attempted to estimate a molecular clock by sequencing 199 isolates from epidemiologically linked tuberculosis cases, collected in the Netherlands spanning almost 16 years.

          Results

          Multiple analyses support an average mutation rate of ~0.3 SNPs per genome per year. However, all analyses revealed a very high degree of variation around this mean, making the confirmation of links proposed by epidemiology, and inference of novel links, difficult. Despite this, in some cases, the phylogenetic context of other strains provided evidence supporting the confident exclusion of previously inferred epidemiological links.

          Conclusions

          This in-depth analysis of the molecular clock revealed that it is slow and variable over short time scales, which limits its usefulness in transmission studies. However, the superior resolution of whole genome sequencing can provide the phylogenetic context to allow the confident exclusion of possible transmission events previously inferred via traditional DNA fingerprinting techniques and epidemiological cluster investigation. Despite the slow generation of variation even at the whole genome level we conclude that the investigation of tuberculosis transmission will benefit greatly from routine whole genome sequencing.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Transforming clinical microbiology with bacterial genome sequencing.

          Whole-genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here, we review the current status of clinical microbiology and how it has already begun to be transformed by using next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties, such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. We predict that the application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development.

            New tools for controlling tuberculosis are urgently needed. Despite our emerging understanding of the biogeography of Mycobacterium tuberculosis, the implications for development of new diagnostics, drugs, and vaccines is unknown. M tuberculosis has a clonal genetic population structure that is geographically constrained. Evidence suggests strain-specific differences in virulence and immunogenicity in light of this global phylogeography. We propose a strain selection framework, based on robust phylogenetic markers, which will allow for systematic and comprehensive evaluation of new tools for tuberculosis control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update.

              Knowledge of the molecular genetic basis of resistance to antituberculous agents has advanced rapidly since we reviewed this topic 3 years ago. Virtually all isolates resistant to rifampin and related rifamycins have a mutation that alters the sequence of a 27-amino-acid region of the beta subunit of ribonucleic acid (RNA) polymerase. Resistance to isoniazid (INH) is more complex. Many resistant organisms have mutations in the katG gene encoding catalase-peroxidase that result in altered enzyme structure. These structural changes apparently result in decreased conversion of INH to a biologically active form. Some INH-resistant organisms also have mutations in the inhA locus or a recently characterized gene (kasA) encoding a beta-ketoacyl-acyl carrier protein synthase. Streptomycin resistance is due mainly to mutations in the 16S rRNA gene or the rpsL gene encoding ribosomal protein S12. Resistance to pyrazinamide in the great majority of organisms is caused by mutations in the gene (pncA) encoding pyrazinamidase that result in diminished enzyme activity. Ethambutol resistance in approximately 60% of organisms is due to amino acid replacements at position 306 of an arabinosyltransferase encoded by the embB gene. Amino acid changes in the A subunit of deoxyribonucleic acid gyrase cause fluoroquinolone resistance in most organisms. Kanamycin resistance is due to nucleotide substitutions in the rrs gene encoding 16S rRNA. Multidrug resistant strains arise by sequential accumulation of resistance mutations for individual drugs. Limited evidence exists indicating that some drug resistant strains with mutations that severely alter catalase-peroxidase activity are less virulent in animal models. A diverse array of strategies is available to assist in rapid detection of drug resistance-associated gene mutations. Although remarkable advances have been made, much remains to be learned about the molecular genetic basis of drug resistance in Mycobacterium tuberculosis. It is reasonable to believe that development of new therapeutics based on knowledge obtained from the study of the molecular mechanisms of resistance will occur.
                Bookmark

                Author and article information

                Journal
                BMC Infect Dis
                BMC Infect. Dis
                BMC Infectious Diseases
                BioMed Central
                1471-2334
                2013
                27 February 2013
                : 13
                : 110
                Affiliations
                [1 ]Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
                [2 ]RIVM, Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, (CIb/LIS, pb 22), P.O. Box 13720 BA, Bilthoven, The Netherlands
                [3 ]Radboud University Medical Centre/NCMLS, Centre for Molecular and Biomolecular Informatics, P.O. Box 91016500 HB, Nijmegen, The Netherlands
                [4 ]Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
                [5 ]Department of tuberculosis control, Public Health Service, Amsterdam, The Netherlands
                [6 ]Netherlands Bioinformatics Centre (NBIC), P.O. Box 91016500HB, Nijmegen, The Netherlands
                [7 ]NIZO food research, P.O. Box 206710 BA, Ede, The Netherlands
                [8 ]Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
                [9 ]Department of Clinical Microbiology and department of Lung Disease, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
                Article
                1471-2334-13-110
                10.1186/1471-2334-13-110
                3599118
                23446317
                7ac7467f-a9eb-48e1-85eb-438e2014731a
                Copyright ©2013 Bryant et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 January 2013
                : 19 February 2013
                Categories
                Research Article

                Infectious disease & Microbiology
                mycobacterium tuberculosis,molecular clock,whole genome sequencing,transmission,epidemiology

                Comments

                Comment on this article