28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quinotrierixin inhibits proliferation of human retinal pigment epithelial cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To investigate the effect of quinotrierixin, a previously reported inhibitor of X-box binding protein 1 (XBP1), on cell proliferation and viability in human retinal pigment epithelium (RPE) cells.

          Methods

          Subconfluent human RPE cells (ARPE-19) were exposed to quinotrierixin for 16–24 h. Cell proliferation was determined with 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay, hemocytometer counts, and CyQUANT NF Cell Proliferation Assay. Apoptosis was detected with terminal deoxynucleotidyl transferase-mediated uridine 5′-triphosphate-biotin nick end labeling assay. XBP1 mRNA splicing and expression of endoplasmic reticulum stress response genes were determined in cells exposed to thapsigargin in the presence or absence of quinotrierixin. Overexpression of spliced XBP1 was achieved with adenovirus.

          Results

          Quinotrierixin reduced RPE cell proliferation in a dose-dependent manner without inducing apoptosis. In cells exposed to thapsigargin, quinotrierixin inhibited XBP1 mRNA splicing and PKR-like endoplasmic reticulum kinase activation, and reduced cellular and nuclear levels of spliced XBP1 and C/EBP homologous protein. Paradoxically, quinotrierixin exacerbated endoplasmic reticulum stress-induced phosphorylation of eIF2α, which in turn led to decreased protein translation. Overexpressing spliced XBP1 partially reversed the inhibition of cell proliferation by quinotrierixin. These results suggest that inhibiting XBP1 splicing contributes to quinotrierixin’s negative effect on RPE cell proliferation, but other mechanisms such as reduction of protein translation are also involved.

          Conclusions

          Quinotrierixin inhibits RPE cell proliferation and may be used as a novel antiproliferative drug for treating proliferative vitreoretinopathy. Future studies are needed to investigate the in vivo effect of quinotrierixin on RPE proliferation in animal models of proliferative vitreoretinopathy.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: not found
          • Article: not found

          Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The retinal pigment epithelium in health and disease.

            Retinal pigment epithelial cells (RPE) constitute a simple layer of cuboidal cells that are strategically situated behind the photoreceptor (PR) cells. The inconspicuousness of this monolayer contrasts sharply with its importance [1]. The relationship between the RPE and PR cells is crucial to sight; this is evident from basic and clinical studies demonstrating that primary dysfunctioning of the RPE can result in visual cell death and blindness. RPE cells carry out many functions including the conversion and storage of retinoid, the phagocytosis of shed PR outer segment membrane, the absorption of scattered light, ion and fluid transport and RPE-PR apposition. The magnitude of the demands imposed on this single layer of cells in order to execute these tasks, will become apparent to the reader of this review as will the number of clinical disorders that take origin from these cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines.

              Human X-box binding protein-1 (XBP1) is an alternatively spliced transcription factor that participates in the unfolded protein response (UPR), a stress-signaling pathway that allows cells to survive the accumulation of unfolded proteins in the endoplasmic reticulum lumen. We have previously demonstrated that XBP1 expression is increased in antiestrogen-resistant breast cancer cell lines and is coexpressed with estrogen receptor alpha (ER) in breast tumors. The purpose of this study is to investigate the role of XBP1 and the UPR in estrogen and antiestrogen responsiveness in breast cancer. Overexpression of spliced XBP1 [XBP1(S)] in ER-positive breast cancer cells leads to estrogen-independent growth and reduced sensitivity to growth inhibition induced by the antiestrogens Tamoxifen and Faslodex in a manner independent of functional p53. Data from gene expression microarray analyses imply that XBP1(S) acts through regulation of the expression of ER, the antiapoptotic gene BCL2, and several other genes associated with control of the cell cycle and apoptosis. Testing this hypothesis, we show that overexpression of XBP1(S) prevents cell cycle arrest and antiestrogen-induced cell death through the mitochondrial apoptotic pathway. XBP1 and/or the UPR may be a useful molecular target for the development of novel predictive and therapeutic strategies in breast cancer.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                Mol. Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2013
                07 January 2013
                : 19
                : 39-46
                Affiliations
                [1 ]State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
                [2 ]Department of Medicine, Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK
                [3 ]Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
                [4 ]Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
                [5 ]Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
                Author notes
                Correspondence to: Sarah X. Zhang, Departments of Medicine, Physiology, and Ophthalmology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 321A, Oklahoma City, OK 73104; Phone: (405) 271-3518; FAX: (405) 271-3973; email: xin-zhang@ 123456ouhsc.edu
                Article
                4 2012MOLVIS0267
                3541046
                23335849
                7b2a9c8c-89eb-4dcc-9ce8-dd717c30cfed
                Copyright © 2013 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 04 June 2012
                : 07 January 2013
                Categories
                Research Article
                Custom metadata
                Export to XML

                Vision sciences
                Vision sciences

                Comments

                Comment on this article