28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Clonal Evolution of Preleukemic Hematopoietic Stem Cells Precedes Human Acute Myeloid Leukemia

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Given that most bone marrow cells are short-lived, the accumulation of multiple leukemogenic mutations in a single clonal lineage has been difficult to explain. We propose that serial acquisition of mutations occurs in self-renewing hematopoietic stem cells (HSCs). We investigated this model through genomic analysis of HSCs from six patients with de novo acute myeloid leukemia (AML). Using exome sequencing, we identified mutations present in individual AML patients harboring the FLT3-ITD (internal tandem duplication) mutation. We then screened the residual HSCs and detected some of these mutations including mutations in the NPM1, TET2, and SMC1A genes. Finally, through single-cell analysis, we determined that a clonal progression of multiple mutations occurred in the HSCs of some AML patients. These preleukemic HSCs suggest the clonal evolution of AML genomes from founder mutations, revealing a potential mechanism contributing to relapse. Such preleukemic HSCs may constitute a cellular reservoir that should be targeted therapeutically for more durable remissions.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          DNA sequencing of a cytogenetically normal acute myeloid leukemia genome

          Lay Summary Acute myeloid leukemia is a highly malignant hematopoietic tumor that affects about 13,000 adults yearly in the United States. The treatment of this disease has changed little in the past two decades, since most of the genetic events that initiate the disease remain undiscovered. Whole genome sequencing is now possible at a reasonable cost and timeframe to utilize this approach for unbiased discovery of tumor-specific somatic mutations that alter the protein-coding genes. Here we show the results obtained by sequencing a typical acute myeloid leukemia genome and its matched normal counterpart, obtained from the patient’s skin. We discovered 10 genes with acquired mutations; two were previously described mutations thought to contribute to tumor progression, and 8 were novel mutations present in virtually all tumor cells at presentation and relapse, whose function is not yet known. Our study establishes whole genome sequencing as an unbiased method for discovering initiating mutations in cancer genomes, and for identifying novel genes that may respond to targeted therapies. We used massively parallel sequencing technology to sequence the genomic DNA of tumor and normal skin cells obtained from a patient with a typical presentation of FAB M1 Acute Myeloid Leukemia (AML) with normal cytogenetics. 32.7-fold ‘haploid’ coverage (98 billion bases) was obtained for the tumor genome, and 13.9-fold coverage (41.8 billion bases) was obtained for the normal sample. Of 2,647,695 well-supported Single Nucleotide Variants (SNVs) found in the tumor genome, 2,588,486 (97.7%) also were detected in the patient’s skin genome, limiting the number of variants that required further study. For the purposes of this initial study, we restricted our downstream analysis to the coding sequences of annotated genes: we found only eight heterozygous, non-synonymous somatic SNVs in the entire genome. All were novel, including mutations in protocadherin/cadherin family members (CDH24 and PCLKC), G-protein coupled receptors (GPR123 and EBI2), a protein phosphatase (PTPRT), a potential guanine nucleotide exchange factor (KNDC1), a peptide/drug transporter (SLC15A1), and a glutamate receptor gene (GRINL1B). We also detected previously described, recurrent somatic insertions in the FLT3 and NPM1 genes. Based on deep readcount data, we determined that all of these mutations (except FLT3) were present in nearly all tumor cells at presentation, and again at relapse 11 months later, suggesting that the patient had a single dominant clone containing all of the mutations. These results demonstrate the power of whole genome sequencing to discover novel cancer-associated mutations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia.

            Mutations occur in several genes in cytogenetically normal acute myeloid leukemia (AML) cells: the nucleophosmin gene (NPM1), the fms-related tyrosine kinase 3 gene (FLT3), the CCAAT/enhancer binding protein alpha gene (CEPBA), the myeloid-lymphoid or mixed-lineage leukemia gene (MLL), and the neuroblastoma RAS viral oncogene homolog (NRAS). We evaluated the associations of these mutations with clinical outcomes in patients. We compared the mutational status of the NPM1, FLT3, CEBPA, MLL, and NRAS genes in leukemia cells with the clinical outcome in 872 adults younger than 60 years of age with cytogenetically normal AML. Patients had been entered into one of four trials of therapy for AML. In each study, patients with an HLA-matched related donor were assigned to undergo stem-cell transplantation. A total of 53% of patients had NPM1 mutations, 31% had FLT3 internal tandem duplications (ITDs), 11% had FLT3 tyrosine kinase-domain mutations, 13% had CEBPA mutations, 7% had MLL partial tandem duplications (PTDs), and 13% had NRAS mutations. The overall complete-remission rate was 77%. The genotype of mutant NPM1 without FLT3-ITD, the mutant CEBPA genotype, and younger age were each significantly associated with complete remission. Of the 663 patients who received postremission therapy, 150 underwent hematopoietic stem-cell transplantation from an HLA-matched related donor. Significant associations were found between the risk of relapse or the risk of death during complete remission and the leukemia genotype of mutant NPM1 without FLT3-ITD (hazard ratio, 0.44; 95% confidence interval [CI], 0.32 to 0.61), the mutant CEBPA genotype (hazard ratio, 0.48; 95% CI, 0.30 to 0.75), and the MLL-PTD genotype (hazard ratio, 1.56; 95% CI, 1.00 to 2.43), as well as receipt of a transplant from an HLA-matched related donor (hazard ratio, 0.60; 95% CI, 0.44 to 0.82). The benefit of the transplant was limited to the subgroup of patients with the prognostically adverse genotype FLT3-ITD or the genotype consisting of wild-type NPM1 and CEBPA without FLT3-ITD. Genotypes defined by the mutational status of NPM1, FLT3, CEBPA, and MLL are associated with the outcome of treatment for patients with cytogenetically normal AML. Copyright 2008 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute myeloid leukaemia.

              Acute myeloid leukaemia (AML) is a heterogeneous clonal disorder of haemopoietic progenitor cells and the most common malignant myeloid disorder in adults. The median age at presentation for patients with AML is 70 years. In the past few years, research in molecular biology has been instrumental in deciphering the pathogenesis of the disease. Genetic defects are thought to be the most important factors in determining the response to chemotherapy and outcome. Whereas significant progress has been made in the treatment of younger adults, the prospects for elderly patients have remained dismal, with median survival times of only a few months. This difference is related to comorbidities associated with ageing and to disease biology. Current efforts in clinical research focus on the assessment of targeted therapies. Such new approaches will probably lead to an increase in the cure rate.
                Bookmark

                Author and article information

                Journal
                Science Translational Medicine
                Science Translational Medicine
                American Association for the Advancement of Science (AAAS)
                1946-6234
                1946-6242
                August 29 2012
                August 29 2012
                August 29 2012
                August 29 2012
                : 4
                : 149
                : 149ra118
                Article
                10.1126/scitranslmed.3004315
                4045621
                22932223
                7b3816ea-3672-4734-9609-b3a6fe21f153
                © 2012
                History

                Comments

                Comment on this article