57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High-content Analysis of Antibody Phage-display Library Selection Outputs Identifies Tumor Selective Macropinocytosis-dependent Rapidly Internalizing Antibodies*

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many forms of antibody-based targeted therapeutics, including antibody drug conjugates, utilize the internalizing function of the targeting antibody to gain intracellular entry into tumor cells. Ideal antibodies for developing such therapeutics should be capable of both tumor-selective binding and efficient endocytosis. The macropinocytosis pathway is capable of both rapid and bulk endocytosis, and recent studies have demonstrated that it is selectively up-regulated by cancer cells. We hypothesize that receptor-dependent macropinocytosis can be achieved using tumor-targeting antibodies that internalize via the macropinocytosis pathway, improving potency and selectivity of the antibody-based targeted therapeutic. Although phage antibody display libraries have been utilized to find antibodies that bind and internalize to target cells, no methods have been described to screen for antibodies that internalize specifically via macropinocytosis. We hereby describe a novel screening strategy to identify phage antibodies that bind and rapidly enter tumor cells via macropinocytosis. We utilized an automated microscopic imaging-based, High Content Analysis platform to identify novel internalizing phage antibodies that colocalize with macropinocytic markers from antibody libraries that we have generated previously by laser capture microdissection-based selection, which are enriched for internalizing antibodies binding to tumor cells in situ residing in their tissue microenvironment (Ruan, W., Sassoon, A., An, F., Simko, J. P., and Liu, B. (2006) Identification of clinically significant tumor antigens by selecting phage antibody library on tumor cells in situ using laser capture microdissection. Mol. Cell. Proteomics. 5, 2364–2373). Full-length human IgG molecules derived from macropinocytosing phage antibodies retained the ability to internalize via macropinocytosis, validating our screening strategy. The target antigen for a cross-species binding antibody with a highly active macropinocytosis activity was identified as ephrin type-A receptor 2. Antibody-toxin conjugates created using this macropinocytosing IgG were capable of potent and receptor-dependent killing of a panel of EphA2-positive tumor cell lines in vitro. These studies identify novel methods to screen for and validate antibodies capable of receptor-dependent macropinocytosis, allowing further exploration of this highly efficient and tumor-selective internalization pathway for targeted therapy development.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search.

          We present a statistical model to estimate the accuracy of peptide assignments to tandem mass (MS/MS) spectra made by database search applications such as SEQUEST. Employing the expectation maximization algorithm, the analysis learns to distinguish correct from incorrect database search results, computing probabilities that peptide assignments to spectra are correct based upon database search scores and the number of tryptic termini of peptides. Using SEQUEST search results for spectra generated from a sample of known protein components, we demonstrate that the computed probabilities are accurate and have high power to discriminate between correctly and incorrectly assigned peptides. This analysis makes it possible to filter large volumes of MS/MS database search results with predictable false identification error rates and can serve as a common standard by which the results of different research groups are compared.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism.

            AS1411 is a first-in-class anticancer agent, currently in phase II clinical trials. It is a quadruplex-forming oligodeoxynucleotide that binds to nucleolin as an aptamer, but its mechanism of action is not completely understood. Mechanistic insights could lead to clinically useful markers for AS1411 response and to novel targeted therapies. Previously, we proposed a model where cell surface nucleolin serves as the receptor for AS1411, leading to selective uptake in cancer cells. Here, we compare uptake of fluorophore-labeled AS1411 (FL-AS1411) in DU145 prostate cancer cells (sensitive to AS1411) and Hs27 nonmalignant skin fibroblasts (resistant to AS1411). Uptake of FL-AS1411 occurred by endocytosis in both cell types and was much more efficient than an inactive, nonquadruplex oligonucleotide. Unexpectedly, uptake of FL-AS1411 was lower in cancer cells compared with Hs27 cells. However, the mechanism of uptake was different, occurring by macropinocytosis in cancer cells, but by a nonmacropinocytic pathway in Hs27 cells. Additionally, treatment of various cancer cells with AS1411 caused hyperstimulation of macropinocytosis, provoking an increase in its own uptake, whereas no stimulation was observed for nonmalignant cells. Nucleolin was not required for initial FL-AS1411 uptake in DU145 cells but was necessary for induced macropinocytosis and FL-AS1411 uptake at later times. Our results are inconsistent with the previous mechanistic model but confirm that nucleolin plays a role in mediating AS1411 effects. The data suggest a new model for AS1411 action as well as a new role for nucleolin in stimulating macropinocytosis, a process with potential applications in drug delivery. ©2010 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells [published erratum appears in J Cell Biol 1990 Mar;110(3):859]

              Addition of EGF to human epidermoid carcinoma A431 cells increases the rate of fluid-phase pinocytosis 6-10-fold as measured by horseradish peroxidase uptake (Haigler, H.T., J. A. McKanna, and S. Cohen. 1979. J. Cell Biol. 83:82-90). We show here that in the absence of extracellular Na+ or in the presence of amiloride the stimulation of pinocytosis by EGF is substantially reduced. Amiloride had no effect on the endocytosis of EGF itself or of transferrin, demonstrating that the receptor-mediated endocytotic pathway operated normally under conditions that blocked stimulated pinocytosis. Amiloride blocked EGF- stimulated pinocytosis in both HCO3(-)-containing and HCO3(-)-free media. The EGF-stimulated pinocytotic activity can frequently be localized to areas of the cell where membrane spreading and ruffling are taking place. These results demonstrate that (a) EGF induces a distinct amiloride-sensitive endocytotic pathway on A431 cells; (b) occupied EGF receptors do not utilize this pathway for their own entry; (c) endocytosis of occupied EGF receptors is not in itself sufficient to stimulate pinocytosis.
                Bookmark

                Author and article information

                Journal
                Mol Cell Proteomics
                Mol. Cell Proteomics
                mcprot
                mcprot
                MCP
                Molecular & Cellular Proteomics : MCP
                The American Society for Biochemistry and Molecular Biology
                1535-9476
                1535-9484
                December 2014
                22 August 2014
                22 August 2014
                : 13
                : 12
                : 3320-3331
                Affiliations
                [1]From the ‡Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110-1305
                Author notes
                § To whom correspondence should be addressed: Department of Anesthesia, 1001 Potrero Ave., Box 1305, San Francisco, CA 94110-1305. Tel.: 415-206-6973; Fax: 514-206-6276; E-mail: liub@ 123456anesthesia.ucsf.edu .
                Article
                M114.039768
                10.1074/mcp.M114.039768
                4256486
                25149096
                7b86dbf1-39e3-48dc-b554-b1f832f16f45
                © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

                Author's Choice—Final version full access.

                History
                : 24 March 2014
                : 15 August 2014
                Categories
                Research

                Molecular biology
                Molecular biology

                Comments

                Comment on this article