8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Agricultural Selection of Wheat Has Been Shaped by Plant-Microbe Interactions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The influence of wheat (modern wheat, both bread and pasta, their wild ancestors and synthetic hybrids) on the microbiota of their roots and surrounding soil is characterized. We isolated lines of bread wheat by hybridizing diploid ( Aegilops tauschii) with tetraploid Triticum durum and crossed it with a modern cultivar of Triticum aestivum. The newly created, synthetic hybrid wheat, which recapitulate the breeding history of wheat through artificial selection, is found to support a microbiome enriched in beneficial Glomeromycetes fungi, but also in, potentially detrimental, Nematoda. We hypothesize that during wheat domestication this plant-microbe interaction diminished, suggesting an evolutionary tradeoff; sacrificing advantageous nutrient acquisition through fungal interactions to minimize interaction with pathogenic fungi. Increased plant selection for Glomeromycetes and Nematoda is correlated with the D genome derived from A. tauschii. Despite differences in their soil microbiota communities, overall wheat plants consistently show a low ratio of eukaryotes to prokaryotes. We propose that this is a mechanism for protection against soil-borne fungal disease and appears to be deeply rooted in the wheat genome. We suggest that the influence of plants on the composition of their associated microbiota is an integral factor, hitherto overlooked, but intrinsic to selection during wheat domestication.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Top 10 plant-parasitic nematodes in molecular plant pathology.

            The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a 'top 10' list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region of the world in which a researcher is based. However, care was taken to include researchers from as many parts of the world as possible when carrying out the survey. The top 10 list emerging from the survey is composed of: (1) root-knot nematodes (Meloidogyne spp.); (2) cyst nematodes (Heterodera and Globodera spp.); (3) root lesion nematodes (Pratylenchus spp.); (4) the burrowing nematode Radopholus similis; (5) Ditylenchus dipsaci; (6) the pine wilt nematode Bursaphelenchus xylophilus; (7) the reniform nematode Rotylenchulus reniformis; (8) Xiphinema index (the only virus vector nematode to make the list); (9) Nacobbus aberrans; and (10) Aphelenchoides besseyi. The biology of each nematode (or nematode group) is reviewed briefly. © 2013 BSPP AND JOHN WILEY & SONS LTD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome plasticity a key factor in the success of polyploid wheat under domestication.

              Wheat was domesticated about 10,000 years ago and has since spread worldwide to become one of the major crops. Its adaptability to diverse environments and end uses is surprising given the diversity bottlenecks expected from recent domestication and polyploid speciation events. Wheat compensates for these bottlenecks by capturing part of the genetic diversity of its progenitors and by generating new diversity at a relatively fast pace. Frequent gene deletions and disruptions generated by a fast replacement rate of repetitive sequences are buffered by the polyploid nature of wheat, resulting in subtle dosage effects on which selection can operate.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                06 February 2020
                2020
                : 11
                : 132
                Affiliations
                [1] 1Department of Plant Sciences, University of Oxford , Oxford, United Kingdom
                [2] 2John Innes Centre, Norwich Research Park , Norwich, United Kingdom
                [3] 3National Institute of Agricultural Botany , Cambridge, United Kingdom
                Author notes

                Edited by: Christina Cowger, Plant Science Research Unit (USDA-ARS), United States

                Reviewed by: Matthew G. Bakker, University of Manitoba, Canada; Christine Hawkes, North Carolina State University, United States; Yang Bai, Max Planck Institute for Plant Breeding Research, Germany

                *Correspondence: Andrzej Tkacz, andrzej.tkacz@ 123456plants.ox.ac.uk

                These authors have contributed equally to this work

                This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.00132
                7015950
                32117153
                7b8d58b7-0216-4082-b8aa-55f1b0995c5c
                Copyright © 2020 Tkacz, Pini, Turner, Bestion, Simmonds, Howell, Greenland, Cheema, Emms, Uauy and Poole.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 October 2019
                : 21 January 2020
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 45, Pages: 12, Words: 0
                Funding
                Funded by: Biotechnology and Biological Sciences Research Council 10.13039/501100000268
                Award ID: BB/N013387/1
                Award ID: BB/P016855/1
                Award ID: BB/P013511/1
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                rhizosphere,microbiota,wheat,polyploidy,crop domestication,triticaeae
                Microbiology & Virology
                rhizosphere, microbiota, wheat, polyploidy, crop domestication, triticaeae

                Comments

                Comment on this article