0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolic Reprogramming in Response to Alterations of Mitochondrial DNA and Mitochondrial Dysfunction in Gastric Adenocarcinoma

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We used gastric cancer cell line AGS and clinical samples to investigate the roles of mitochondrial DNA (mtDNA) alterations and mitochondrial respiratory dysfunction in gastric adenocarcinoma (GAC). A total of 131 clinical samples, including 17 normal gastric mucosa (N-GM) from overweight patients who had received sleeve gastrectomy and 57 paired non-cancerous gastric mucosae (NC-GM) and GAC from GAC patients who had undergone partial/subtotal/total gastrectomy, were recruited to examine the copy number and D310 sequences of mtDNA. The gastric cancer cell line AGS was used with knockdown (KD) mitochondrial transcription factor A (TFAM) to achieve mitochondrial dysfunction through a decrease of mtDNA copy number. Parental (PT), null-target (NT), and TFAM-KD-(A/B/C) represented the parental, control, and TFAM knocked-down AGS cells, respectively. These cells were used to compare the parameters reflecting mitochondrial biogenesis, glycolysis, and cell migration activity. The median mtDNA copy numbers of 17 N-GM, 57 NC-GM, and 57 GAC were 0.058, 0.055, and 0.045, respectively. The trend of decrease was significant (p = 0.030). In addition, GAC had a lower mean mtDNA copy number of 0.055 as compared with the paired NC-GM of 0.078 (p < 0.001). The mean mtDNA copy number ratio (mtDNA copy number of GAC/mtDNA copy number of paired NC-GM) was 0.891. A total of 35 (61.4%) GAC samples had an mtDNA copy number ratio ≤0.804 (p = 0.017) and 27 (47.4%) harbored a D310 mutation (p = 0.047), and these patients had shorter survival time and poorer prognosis. After effective knockdown of TFAM, TFAM-KD-B/C cells expressed higher levels of hexokinase II (HK-II) and v-akt murine thymoma viral oncogene homolog 1 gene (AKT)-encoded AKT, but lower levels of phosphorylated pyruvate dehydrogenase (p-PDH) than did the NT/PT AGS cells. Except for a higher level of p-PDH, the expression levels of these proteins remained unchanged in TFAM-KD-A, which had a mild knockdown of TFAM. Compared to those of NT, TFAM-KD-C had not only a lower mtDNA copy number (p = 0.050), but also lower oxygen consumption rates (OCR), including basal respiration (OCRBR), ATP-coupled respiration (OCRATP), reserve capacity (OCRRC), and proton leak (OCRPL)(all with p = 0.050). In contrast, TFAM-KD-C expressed a higher extracellular acidification rate (ECAR)/OCRBR ratio (p = 0.050) and a faster wound healing migration at 6, 12, and 18 h, respectively (all with p = 0.050). Beyond a threshold, the decrease in mtDNA copy number, the mtDNA D310 mutation, and mitochondrial dysfunction were involved in the carcinogenesis and progression of GACs. Activation of PDH might be considered as compensation for the mitochondrial dysfunction in response to glucose metabolic reprogramming or to adjust mitochondrial plasticity in GAC.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding the Warburg effect: the metabolic requirements of cell proliferation.

            In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed "the Warburg effect." Aerobic glycolysis is an inefficient way to generate adenosine 5'-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              On the Origin of Cancer Cells

              O WARBURG (1956)
                Bookmark

                Author and article information

                Contributors
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                February 2022
                February 06 2022
                : 23
                : 3
                : 1857
                Article
                10.3390/ijms23031857
                7b9cdf15-60ab-4508-83bf-67ce32ef638a
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article