2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Research Progress of Anti-PD-1/PD-L1 Immunotherapy Related Mechanisms and Predictive Biomarkers in NSCLC

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) is an important pair of immune checkpoints (IC), which play an essential role in the immune escaping process of tumors. Anti-PD-1/PD-L1 immunotherapy can block the suppression effect of the immune system produced by tumor cells through the PD-1/PD-L1 axis and restore the pernicious effect of the immune system on tumor cells. The specific mechanism of anti-PD-1/PD-L1 immunotherapy is closely related to PI3K (phosphatidylinositol 3-kinase)/AKT (AKT serine/threonine kinase 1), JNK (c-Jun N-terminal kinase), NF-kB (nuclear factor-kappa B subunit 1), and other complex signaling pathways. Patients receiving anti-PD-1/PD-L1 immunotherapy are prone to drug resistance. The mechanisms of drug resistance mainly include weakening recognition of tumor antigens by immune cells, inhibiting activation of immune cells, and promoting the production of suppressive immune cells and molecules. Anti-PD-1/PD-L1 immunotherapy plays a vital role in non-small cell lung cancer (NSCLC). It is essential to find better efficacy prediction-related biomarkers and screen patients suitable for immunotherapy. At present, common biomarkers related to predicting immune efficacy mainly include PD-L1 expression level in tumors, tumor mutation burden (TMB), microsatellite instability (MSI)/mismatch repair (MMR), mutations of driver gene, etc. However, the screening efficacy of each indicator is not ideal, and the combined application of multiple indicators is currently used. This article comprehensively reviews anti-PD-1/PD-L1 immunotherapy-related mechanisms, drug resistance-related mechanisms, and therapeutic efficacy-related predictive biomarkers.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer Statistics, 2021

            Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer.

              Immune checkpoint inhibitors, which unleash a patient's own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non-small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti-PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti-PD-1 therapy. Copyright © 2015, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                09 February 2022
                2022
                : 12
                : 769124
                Affiliations
                [1] 1 Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
                [2] 2 State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
                Author notes

                Edited by: Christian Rolfo, University of Maryland Medical System, United States

                Reviewed by: Ming Li, Fudan University, China; Pasquale Pisapia, University of Naples Federico II, Italy

                *Correspondence: Shugeng Gao, gaoshugeng@ 123456cicams.ac.cn

                This article was submitted to Thoracic Oncology, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2022.769124
                8863729
                35223466
                7ba0b5e9-f087-40fa-b808-92d83438c3d6
                Copyright © 2022 Bie, Tian, Sun, Zang, Zhang, Song, Liu, Peng, Bai, Zhou and Gao

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 September 2021
                : 20 January 2022
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 82, Pages: 9, Words: 3775
                Categories
                Oncology
                Review

                Oncology & Radiotherapy
                non-small cell lung cancer (nsclc),programmed cell death-1 (pd-1)/programmed death-ligand 1 (pd-l1),immunotherapy,predictive biomarkers,drug resistance

                Comments

                Comment on this article