520
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unconditional quantum teleportation between distant solid-state qubits

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward we achieve teleportation in each attempt while obtaining an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Quantum Internet

          H. Kimble (2008)
          Quantum networks offer a unifying set of opportunities and challenges across exciting intellectual and technical frontiers, including for quantum computation, communication, and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for the generation and characterization of quantum coherence and entanglement. Fundamental to this endeavor are quantum interconnects that convert quantum states from one physical system to those of another in a reversible fashion. Such quantum connectivity for networks can be achieved by optical interactions of single photons and atoms, thereby enabling entanglement distribution and quantum teleportation between nodes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Superconducting circuits for quantum information: an outlook.

            The performance of superconducting qubits has improved by several orders of magnitude in the past decade. These circuits benefit from the robustness of superconductivity and the Josephson effect, and at present they have not encountered any hard physical limits. However, building an error-corrected information processor with many such qubits will require solving specific architecture problems that constitute a new field of research. For the first time, physicists will have to master quantum error correction to design and operate complex active systems that are dissipative in nature, yet remain coherent indefinitely. We offer a view on some directions for the field and speculate on its future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Experimental quantum teleportation

              Quantum teleportation -- the transmission and reconstruction over arbitrary distances of the state of a quantum system -- is demonstrated experimentally. During teleportation, an initial photon which carries the polarization that is to be transferred and one of a pair of entangled photons are subjected to a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon. This latter photon can be arbitrarily far away from the initial one. Quantum teleportation will be a critical ingredient for quantum computation networks.
                Bookmark

                Author and article information

                Journal
                2014-04-16
                2014-06-03
                Article
                10.1126/science.1253512
                1404.4369
                7bbffcd8-58c7-4029-a400-528364a0b017

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Science 1253512, Published online 29 May 2014
                14 pages, 10 figures; added supplementary material and DOI
                quant-ph cond-mat.mes-hall

                Quantum physics & Field theory
                Quantum physics & Field theory

                Comments

                Comment on this article