11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Chronification of Pain: Mechanisms, Current Understanding, and Clinical Implications

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The development of acute to chronic pain involves distinct pathophysiological changes in the peripheral and central nervous systems. This article reviews the mechanisms, etiologies, and management of chronic pain syndromes with updates from recent findings in the literature.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Models and mechanisms of hyperalgesia and allodynia.

          Hyperalgesia and allodynia are frequent symptoms of disease and may be useful adaptations to protect vulnerable tissues. Both may, however, also emerge as diseases in their own right. Considerable progress has been made in developing clinically relevant animal models for identifying the most significant underlying mechanisms. This review deals with experimental models that are currently used to measure (sect. II) or to induce (sect. III) hyperalgesia and allodynia in animals. Induction and expression of hyperalgesia and allodynia are context sensitive. This is discussed in section IV. Neuronal and nonneuronal cell populations have been identified that are indispensable for the induction and/or the expression of hyperalgesia and allodynia as summarized in section V. This review focuses on highly topical spinal mechanisms of hyperalgesia and allodynia including intrinsic and synaptic plasticity, the modulation of inhibitory control (sect. VI), and neuroimmune interactions (sect. VII). The scientific use of language improves also in the field of pain research. Refined definitions of some technical terms including the new definitions of hyperalgesia and allodynia by the International Association for the Study of Pain are illustrated and annotated in section I.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Descending pain modulation and chronification of pain.

            Chronic pain is an important public health problem that negatively impacts quality of life of affected individuals and exacts an enormous socio-economic cost. Currently available therapeutics provide inadequate management of pain in many patients. Acute pain states generally resolve in most patients. However, for reasons that are poorly understood, in some individuals, acute pain can transform to a chronic state. Our understanding of the risk factors that underlie the development of chronic pain is limited. Recent studies have suggested an important contribution of dysfunction in descending pain modulatory circuits to pain 'chronification'. Human studies provide insights into possible endogenous and exogenous factors that may promote the conversion of pain into a chronic condition. Descending pain modulatory systems have been studied and characterized in animal models. Human brain imaging techniques, deep brain stimulation and the mechanisms of action of drugs that are effective in the treatment of pain confirm the clinical relevance of top-down pain modulatory circuits. Growing evidence supports the concept that chronic pain is associated with a dysregulation in descending pain modulation. Disruption of the balance of descending modulatory circuits to favour facilitation may promote and maintain chronic pain. Recent findings suggest that diminished descending inhibition is likely to be an important element in determining whether pain may become chronic. This view is consistent with the clinical success of drugs that enhance spinal noradrenergic activity, such as serotonin/norepinephrine reuptake inhibitors (SNRIs), in the treatment of chronic pain states. Consistent with this concept, a robust descending inhibitory system may be normally engaged to protect against the development of chronic pain. Imaging studies show that higher cortical and subcortical centres that govern emotional, motivational and cognitive processes communicate directly with descending pain modulatory circuits providing a mechanistic basis to explain how exogenous factors can influence the expression of chronic pain in a susceptible individual. Preclinical studies coupled with clinical pharmacologic and neuroimaging investigations have advanced our understanding of brain circuits that modulate pain. Descending pain facilitatory and inhibitory circuits arising ultimately in the brainstem provide mechanisms that can be engaged to promote or protect against pain 'chronification'. These systems interact with higher centres, thus providing a means through which exogenous factors can influence the risk of pain chronification. A greater understanding of the role of descending pain modulation can lead to novel therapeutic directions aimed at normalizing aberrant processes that can lead to chronic pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              When does acute pain become chronic?

              The transition from acute to chronic pain appears to occur in discrete pathophysiological and histopathological steps. Stimuli initiating a nociceptive response vary, but receptors and endogenous defence mechanisms in the periphery interact in a similar manner regardless of the insult. Chemical, mechanical, and thermal receptors, along with leucocytes and macrophages, determine the intensity, location, and duration of noxious events. Noxious stimuli are transduced to the dorsal horn of the spinal cord, where amino acid and peptide transmitters activate second-order neurones. Spinal neurones then transmit signals to the brain. The resultant actions by the individual involve sensory-discriminative, motivational-affective, and modulatory processes in an attempt to limit or stop the painful process. Under normal conditions, noxious stimuli diminish as healing progresses and pain sensation lessens until minimal or no pain is detected. Persistent, intense pain, however, activates secondary mechanisms both at the periphery and within the central nervous system that cause allodynia, hyperalgesia, and hyperpathia that can diminish normal functioning. These changes begin in the periphery with upregulation of cyclo-oxygenase-2 and interleukin-1β-sensitizing first-order neurones, which eventually sensitize second-order spinal neurones by activating N-methyl-d-aspartic acid channels and signalling microglia to alter neuronal cytoarchitecture. Throughout these processes, prostaglandins, endocannabinoids, ion-specific channels, and scavenger cells all play a key role in the transformation of acute to chronic pain. A better understanding of the interplay among these substances will assist in the development of agents designed to ameliorate or reverse chronic pain.
                Bookmark

                Author and article information

                Journal
                Current Pain and Headache Reports
                Curr Pain Headache Rep
                Springer Science and Business Media LLC
                1531-3433
                1534-3081
                February 2018
                February 5 2018
                February 2018
                : 22
                : 2
                Article
                10.1007/s11916-018-0666-8
                29404791
                7bc80979-7713-428e-8543-d9d2d06dd3e1
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article