8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unilateral Focused Ultrasound-Induced Blood-Brain Barrier Opening Reduces Phosphorylated Tau from The rTg4510 Mouse Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The neuropathological hallmarks of Alzheimer's disease include amyloid plaques and neurofibrillary tangles. Tau pathology correlates well with impaired neuronal activity and dementia. Focused ultrasound coupled with systemic administration of microbubbles has previously been shown to open the blood-brain barrier and induce an immune response, which, in an amyloid AD mouse model, resulted in the reduction of the amyloid brain load.

          Methods: In this study, we investigated the effect of focused ultrasound at the early stages of tau pathology (pre-tangle) in the rTg4510 mouse model.

          Results: Reduction of phosphorylated tau from the hippocampal formation processes, and particularly the pyramidal CA1 neurons, was noted in the ultrasound-treated brains without an associated increase in the phosphorylated tau-affected cell somas, typically associated with disease progression. Attenuation of the pathology was found to correlate well with the ultrasound-initiated immune response without compromising neuronal integrity. Unilateral ultrasound application resulted in a bilateral effect indicating a broader reduction of the phosphorylated tau.

          Conclusion: Findings presented herein reinforce the premise of ultrasound in reducing tau pathology and thus curbing the progression of Alzheimer's disease.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          The Monte Carlo method.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles.

            Local blood-brain barrier (BBB) opening is an advantageous approach for targeted drug delivery to the brain. Recently, it has been shown that focused ultrasound (US) exposures (sonications), when applied in the presence of preformed gas bubbles, caused magnetic-resonance (MR) proven reversible opening of the BBB in targeted locations. The cellular mechanisms of such transient barrier disruption are largely unknown. We investigated US-induced changes in endothelial cell fine morphology that resulted in the BBB opening in rabbits. To obtain evidence for the passage of blood-borne macromolecules through the opened transvascular routes, an immunocytochemical procedure for endogenous immunoglobulinG (IgG) was performed, in addition to the routine electron microscopy. An increased number of vesicles and vacuoles, fenestration and channel formation, as well as opening of some tight junctions, were seen in capillaries after low-power (0.55 W) sonication. Immunosignals presented in some of the vesicles and vacuoles, in the cytoplasmic channels and, so rarely, in intercellular clefts; immunosignals could also be seen in neuropil around the blood vessels. Damage to the cellular ultrastructure was not seen in these areas. However, cell destruction and leakage of IgG through defects of the endothelial lining took place at 3 W sonications. The data reveals that several mechanisms of transcapillary passage are possible after such sonications: 1. transcytosis; 2. endothelial cell cytoplasmic openings--fenestration and channel formation; 3. opening of a part of tight junctions; and 4. free passage through the injured endothelium (with the higher power sonications). These findings could be considered in further development of the strategy for drug delivery to brain parenchyma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium.

              Previous studies have investigated a potential method for targeted drug delivery in the central nervous system that uses focused ultrasound bursts combined with an ultrasound contrast agent to temporarily disrupt the blood-brain barrier (BBB). The purpose of this work was to investigate the integrity of the tight junctions (TJs) in rat brain microvessels after this BBB disruption. Ultrasound bursts (1.5-MHz) in combination with a gas contrast agent (Optison) was applied at two locations in the brain in 25 rats to induce BBB disruption. Using immunoelectron microscopy, the distributions of the TJ-specific transmembrane proteins occludin, claudin-1, claudin-5, and of submembranous ZO-1 were examined at 1, 2, 4, 6 and 24 h after sonication. A quantitative evaluation of the protein expression was made by counting the number of immunosignals per micrometer in the junctional clefts. BBB disruption at the sonicated locations was confirmed by the leakage of i.v. administered horseradish peroxidase (HRP, m.w. 40,000 Da) and lanthanum chloride (La(3+), m.w. approximately 139 Da). Leakage of these agents was observed at 1 and 2 h and, in a few vessels, at 4 h after ultrasound application. These changes were paralleled by the apparent disintegration of the TJ complexes, as evidenced by the redistribution and loss of the immunosignals for occludin, claudin-5 and ZO-1. Claudin-1 seemed less involved. At 6 and 24 h after sonication, no HRP or lanthanum leakage was observed and the barrier function of the TJs, as indicated by the localization and density of immunosignals, appeared to be completely restored. This study provides the first direct evidence that ultrasound bursts combined with a gas contrast agent cause disassembling of the TJ molecular structure, leading to loss of the junctional barrier functions in brain microvessels. The BBB disruption appears to last up to 4 h after sonication and permits the paracellular passage of agents with molecular weights up to at least 40 kDa. These promising features can be exploited in the future development of this method that could enable the delivery of drugs, antibodies or genes to targeted locations in the brain.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2019
                13 July 2019
                : 9
                : 18
                : 5396-5411
                Affiliations
                [1 ]Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
                [2 ]Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
                [3 ]Department of Neurology and Pathology, Columbia University, New York, NY 10032, USA
                [4 ]Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
                [5 ]Department of Integrative Neuroscience, Columbia University, New York, NY 10032, USA
                [6 ]Department of Radiology, Columbia University, New York, NY 10032, USA
                Author notes
                ✉ Corresponding author: ek2191@ 123456columbia.edu .

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov09p5396
                10.7150/thno.28717
                6691580
                31410223
                7bda47f5-a66a-47cd-a6c9-bcf4fdbcc107
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 23 July 2018
                : 21 June 2019
                Categories
                Research Paper

                Molecular medicine
                focused ultrasound,blood-brain barrier opening,tau pathology,alzheimer's disease

                Comments

                Comment on this article