11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Thermo-responsive drug release from self-assembled micelles of brush-like PLA/PEG analogues block copolymers.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thermo-responsive brush-like amphiphilic poly[2-(2-methoxyethoxy) ethyl methacrylate-co-oligo(ethylene glycol) methacrylate]-b-poly(l-lactide)-b-poly[2-(2-methoxyethoxy) ethyl methacrylate-co-oligo(ethylene glycol) methacrylate] [P(MEO2MA-co-OEGMA)-b-PLLA-b-P(MEO2MA-co-OEGMA)] triblock copolymers were synthesized by atom transfer radical polymerization of MEO2MA and OEGMA co-monomers using a α,ω-Bromopropionyl poly(l-lactide) (Br-PLLA-Br) macroinitiator. The resulting copolymers with MEO2MA/OEGMA molar ratio ranging from 79/21 to 42/58 were characterized by (1)H nuclear magnetic resonance and size exclusion chromatography. Thermo-responsive micelles were obtained by self-assembly of copolymers in aqueous medium. The micelles are spherical in shape with sizes varying from 20.7 to 102.5 nm. A hydrophobic anticancer drug, curcumin, was encapsulated in micelles by using membrane hydration method. The properties of drug loaded micelles were determined by dynamic light scattering, transmission electron microscopy and lower critical solution temperature (LCST) measurements. The micelles size decreases from 102.5 nm for blank micelles to 37.6 nm with 10.8% drug loading, suggesting that the drug plays an important role in the micellization procedure. The LCST decreases from 45.1°C for blank micelles to 40.6 and 38.3°C with 5.9 and 10.8% drug loading, respectively. In vitro drug release was performed in pH 7.4 PBS at different temperatures. Data show that the release rate was significantly enhanced above the LCST comparing with that below the LCST. The amount of released drug at 41°C was ca. 20% higher than that at 37°C. Burst-like release was depressed due to enhanced interaction between drug with hydrophobic PLA and PMA chains.

          Related collections

          Author and article information

          Journal
          Int J Pharm
          International journal of pharmaceutics
          1873-3476
          0378-5173
          Aug 1 2015
          : 491
          : 1-2
          Affiliations
          [1 ] Institut des Biomolécules Max Mousseron, UMR CNRS 5247-Equipe Biopolymères Artificiels, Université de Montpellier, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier, France.
          [2 ] Institut Charles Gerhardt, UMR CNRS 5253-Equipe Ingénierie et Architectures Macromoléculaires, Université de Montpellier, cc1702, Place Eugène Bataillon, 34095 Montpellier, France.
          [3 ] Institut des Biomolécules Max Mousseron, UMR CNRS 5247-Equipe Biopolymères Artificiels, Université de Montpellier, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier, France. Electronic address: suming.li@umontpellier.fr.
          Article
          S0378-5173(15)00540-2
          10.1016/j.ijpharm.2015.06.020
          26095914
          7c4f1b7c-5e2e-4295-9e42-9bde21324c3b
          Copyright © 2015. Published by Elsevier B.V.
          History

          Brush-like copolymer,Drug release,Micelle,PEG analogues,Polylactide,Thermo-responsive

          Comments

          Comment on this article