10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fibroblast Growth Factor Receptors (FGFRs) in Human Sperm: Expression, Functionality and Involvement in Motility Regulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse.

          Although members of the fibroblast growth factor (FGF) family and their receptors have well-established roles in embryogenesis, their contributions to adult physiology remain relatively unexplored. Here, we use real-time quantitative PCR to determine the mRNA expression patterns of all 22 FGFs, the seven principal FGF receptors (FGFRs), and the three members of the Klotho family of coreceptors in 39 different mouse tissues. Unsupervised hierarchical cluster analysis of the mRNA expression data reveals that most FGFs and FGFRs fall into two groups the expression of which is enriched in either the central nervous system or reproductive and gastrointestinal tissues. Interestingly, the FGFs that can act as endocrine hormones, including FGF15/19, FGF21, and FGF23, cluster in a third group that does not include any FGFRs, underscoring their roles in signaling between tissues. We further show that the most recently identified Klotho family member, Lactase-like, is highly and selectively expressed in brown adipose tissue and eye and can function as an additional coreceptor for FGF19. This FGF atlas provides an important resource for guiding future studies to elucidate the physiological functions of FGFs in adult animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural basis for fibroblast growth factor receptor activation.

            FGF signaling plays a ubiquitous role in human biology as a regulator of embryonic development, homeostasis and regenerative processes. In addition, aberrant FGF signaling leads to diverse human pathologies including skeletal, olfactory, and metabolic disorders as well as cancer. FGFs execute their pleiotropic biological actions by binding, dimerizing and activating cell surface FGF receptors (FGFRs). Proper regulation of FGF-FGFR binding specificity is essential for the regulation of FGF signaling and is achieved through primary sequence variations among the 18 FGFs and seven FGFRs. The severity of human skeletal syndromes arising from mutations that violate FGF-FGFR specificity is a testament to the importance of maintaining precision in FGF-FGFR specificity. The discovery that heparin/heparan sulfate (HS) proteoglycans are required for FGF signaling led to numerous models for FGFR dimerization and heralded one of the most controversial issues in FGF signaling. Recent crystallographic analyses have led to two fundamentally different models for FGFR dimerization. These models differ in both the stoichiometry and minimal length of heparin required for dimerization, the quaternary arrangement of FGF, FGFR and heparin in the dimer, and in the mechanism of 1:1 FGF-FGFR recognition and specificity. In this review, we provide an overview of recent structural and biochemical studies used to differentiate between the two crystallographic models. Interestingly, the structural and biophysical analyses of naturally occurring pathogenic FGFR mutations have provided the most compelling and unbiased evidences for the correct mechanisms for FGF-FGFR dimerization and binding specificity. The structural analyses of different FGF-FGFR complexes have also shed light on the intricate mechanisms determining FGF-FGFR binding specificity and promiscuity and also provide a plausible explanation for the molecular basis of a large number craniosynostosis mutations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase.

              A novel series of N-aryl-N'-pyrimidin-4-yl ureas has been optimized to afford potent and selective inhibitors of the fibroblast growth factor receptor tyrosine kinases 1, 2, and 3 by rationally designing the substitution pattern of the aryl ring. On the basis of its in vitro profile, compound 1h (NVP-BGJ398) was selected for in vivo evaluation and showed significant antitumor activity in RT112 bladder cancer xenografts models overexpressing wild-type FGFR3. These results support the potential therapeutic use of 1h as a new anticancer agent.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                13 May 2015
                2015
                : 10
                : 5
                : e0127297
                Affiliations
                [1 ]Instituto de Biología y Medicina Experimental (IBYME), CONICET-FIBYME, Buenos Aires, Argentina
                [2 ]Laboratorio de Medicina Reproductiva, Area de Bioquímica Clínica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
                [3 ]Reprolab, Sanatorio Británico de Rosario, Rosario, Santa Fe, Argentina
                Universidad Nacional Autónoma de México, MEXICO
                Author notes

                Competing Interests: MJM is the director of Reprolab, Sanatorio Británico de Rosario. Reprolab provided the human samples from donors used in this study. This does not alter our adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: CMB MHVL. Performed the experiments: LS GNB. Analyzed the data: LS GNB CMB MHVL. Contributed reagents/materials/analysis tools: MR TG AG MJM. Wrote the paper: CMB MHVL.

                Article
                PONE-D-14-48747
                10.1371/journal.pone.0127297
                4430232
                25970615
                7c67cf8a-d103-4ba7-97b6-faf7d6314b2c
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 29 October 2014
                : 13 April 2015
                Page count
                Figures: 6, Tables: 1, Pages: 17
                Funding
                This study was supported by the Fundación Florencio Fiorini and the National Agency to Promote Science and Technology (ANPCyT; PICT 2013 # 627) to CMB, as well as the National Research Council of Argentina (CONICET) (grant PIP 2008 2120 to MHVL and 2012 740 to MHVL and CMB). Reprolab provided support in the form of salaries for author MJM, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of the authors are articulated in the ‘author contributions’ section.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article