10
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before September 30, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Residual Urinary Concentrating Ability and AQP2 Expression in a Rat Model for Chronic Renal Failure

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: In chronic renal failure (CRF), a defect in urinary concentrating ability develops gradually as the renal failure progresses. Although several molecular mechanisms associated with renal urinary concentration are reported to be impaired in a rat model for renal failure, the mechanisms underlying residual urinary concentration ability in CRF remain to be elucidated. Methods: Rats that underwent an 8-week recovery period after 5/6 nephrectomy were used as the model for CRF. Urinary concentration was induced by 24-hour water restriction. Plasma osmolality and arginine vasopressin (AVP) were measured from blood sampled by inserting a catheter into the femoral artery before and after the water restriction. AQP2 mRNA expression in the inner medulla was examined by competitive PCR and in situ hybridization, and protein expression, by Western blotting. Rats that underwent sham operation were used as control. Results: Water restriction significantly reduced urine volume and increased urine osmolality in CRF rats, although such changes were much less than those in sham-operated rats. Plasma AVP was elevated at the basal condition, and further elevation was noted after water restriction. AQP2 mRNA signals were significantly intensified by water restriction even in CRF rats, although the increase was limited as in the case of urine osmolality. Western blotting also showed a small but significant enhancement of protein signals in response to water restriction in CRF rats. Conclusions: We noted a weak but significant response of AQP2 expression to dehydration in CRF rats. This response in the collecting duct may be one of the factors contributing to residual urinary concentrating ability in CRF.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Cloning and expression of apical membrane water channel of rat kidney collecting tubule.

          Concentrating urine is mandatory for most mammals to prevent water loss from the body. Concentrated urine is produced in response to vasopressin by the transepithelial recovery of water from the lumen of the kidney collecting tubule through highly water-permeable membranes. In this nephron segment, vasopressin regulates water permeability by endo- and exocytosis of water channels from or to the apical membrane. CHIP28 is a water channel in red blood cells and the kidney proximal tubule, but it is not expressed in the collecting tubule. Here we report the cloning of the complementary DNA for WCH-CD, a water channel of the apical membrane of the kidney collecting tubule. WCH-CD is 42% identical in amino-acid sequence to CHIP28. WCH-CD transcripts are detected only in the collecting tubule of the kidney. Immunohistochemically, WCH-CD is localized to the apical region of the kidney collecting tubule cells. Expression of WCH-CD in Xenopus oocytes markedly increases osmotic water permeability. The functional expression and the limited localization of WCH-CD to the apical region of the kidney collecting tubule suggest that WCH-CD is the vasopressin-regulated water channel.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Difficulties in understanding human "acute tubular necrosis": limited data and flawed animal models.

              This review summarizes the current understanding of the renal biopsy in "acute tubular necrosis" and the attempts to mimic this phenomenon in animal models. Paradoxically, only very limited necrosis is present in the biopsy of patients with this condition and differences in biopsies of patients with sustained and recovering renal failure cannot be clearly defined. The small amount of material examined, the variation in timing of the biopsy, the ability of the nephron to recover from sublethal injury, and the complexity of the clinical situation compound the difficulties in understanding this condition. Morphological findings in the animal studies are not equivalent to those in the human biopsy of "acute tubular necrosis," because they either have too much proximal tubular necrosis (ischemia-reflow model) or show severe injury to distal nephron segments (distal nephron model), the degree of which has not been clearly documented, as yet, in human material. The direct relevance of animal models in part may be tested by new noninvasive methods that define and quantify excreted proteins that reflect nephron injury or measure the status of renal oxygenation by radiological imaging techniques. Finally, it may be time to re-examine the morphology of "acute tubular necrosis," utilizing new techniques that illustrate induction of heat shock proteins, sublethal and apoptotic cellular injury, and alteration of gene expression.
                Bookmark

                Author and article information

                Journal
                NEP
                Nephron Physiol
                10.1159/issn.1660-2137
                Nephron Physiology
                S. Karger AG
                1660-2137
                2005
                January 2005
                27 December 2004
                : 99
                : 1
                : p16-p22
                Affiliations
                aDivision of Molecular Medicine in Center for Translational and Advanced Animal Research on Human Diseases, and Divisions of bMolecular Pharmacology, cAdvanced Surgical Science and Technology, and dAnethesilogy and Perioperative Medicine, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
                Article
                81798 Nephron Physiol 2005;99:p16–p22
                10.1159/000081798
                15637468
                7c95f73f-0727-4d94-9ee6-450a87fdd4dd
                © 2005 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 20 November 2003
                : 23 August 2004
                Page count
                Figures: 5, References: 25, Pages: 1
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                Aquaporin 2,Urinary concentration,Chronic renal failure,Arginine vasopressin

                Comments

                Comment on this article