8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dosing and Efficacy of Glutamine Supplementation in Human Exercise and Sport Training

      The Journal of Nutrition
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Some athletes can have high intakes of l-glutamine because of their high energy and protein intakes and also because they consume protein supplements, protein hydrolysates, and free amino acids. Prolonged exercise and periods of heavy training are associated with a decrease in the plasma glutamine concentration and this has been suggested to be a potential cause of the exercise-induced immune impairment and increased susceptibility to infection in athletes. However, several recent glutamine feeding intervention studies indicate that although the plasma glutamine concentration can be kept constant during and after prolonged strenuous exercise, the glutamine supplementation does not prevent the postexercise changes in several aspects of immune function. Although glutamine is essential for lymphocyte proliferation, the plasma glutamine concentration does not fall sufficiently low after exercise to compromise the rate of proliferation. Acute intakes of glutamine of approximately 20-30 g seem to be without ill effect in healthy adult humans and no harm was reported in 1 study in which athletes consumed 28 g glutamine every day for 14 d. Doses of up to 0.65 g/kg body mass of glutamine (in solution or as a suspension) have been reported to be tolerated by patients and did not result in abnormal plasma ammonia levels. However, the suggested reasons for taking glutamine supplements (support for immune system, increased glycogen synthesis, anticatabolic effect) have received little support from well-controlled scientific studies in healthy, well-nourished humans.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Glutamine metabolism in lymphocytes of the rat.

          The metabolism of glutamine in resting and concanavalin-A-stimulated lymphocytes was investigated. In incubated lymphocytes isolated from rat mesenteric lymph nodes, the rates of oxygen and glutamine utilization and that of aspartate production were approximately linear with respect to time for 60 min, and the concentrations of adenine nucleotides plus the ATP/ADP or ATP/AMP concentration ratios remained approximately constant for 90 min. The major end products of glutamine metabolism were glutamate, aspartate and ammonia: the carbon from glutamine may contribute about 30% to respiration. When both glucose and glutamine were presented to the cells, the rates of utilization of both substances increased. Evidence was obtained that the stimulation of glycolysis by glutamine could be due, in part, to an activation of 6-phosphofructokinase. Starvation of the donor animal increased the rate of glutamine utilization. The phosphoenolpyruvate carboxykinase inhibitor mercaptopicolinate decreased the rate of glutamine utilization by 28%; the rates of accumulation of glutamate and ammonia were decreased, whereas those of lactate, aspartate and malate were increased. The mitogen concanavalin A increased the rate of glutamine utilization (by about 51%). The rate of [3H]thymidine incorporation into DNA caused by concanavalin A in cultured lymphocytes was very low in the absence of glutamine; it was increased about 4-fold at 1 microM-glutamine and was maximal at 0.3 mM-glutamine; neither other amino acids nor ammonia could replace glutamine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nonnutritive effects of glutamine.

            Erich Roth (2008)
            Glutamine is the most abundant free amino acid of the human body. Besides its role as a constituent of proteins and its importance in amino acid transamination, glutamine has regulatory capacity in immune and cell modulation. Glutamine deprivation reduces proliferation of lymphocytes, influences expression of surface activation markers on lymphocytes and monocytes, affects the production of cytokines, and stimulates apoptosis. Moreover, glutamine administration seems to have a positive effect on glucose metabolism in the state of insulin resistance. Glutamine influences a variety of different molecular pathways. Glutamine stimulates the formation of heat shock protein 70 in monocytes by enhancing the stability of mRNA, influences the redox potential of the cell by enhancing the formation of glutathione, induces cellular anabolic effects by increasing the cell volume, activates mitogen-activated protein kinases, and interacts with particular aminoacyl-transfer RNA synthetases in specific glutamine-sensing metabolism. Glutamine is applied under clinical conditions as an oral, parenteral, or enteral supplement either as the single amino acid or in the form of glutamine-containing dipeptides for preventing mucositis/stomatitis and for preventing glutamine-deficiency in critically ill patients. Because of the high turnover rate of glutamine, even high amounts of glutamine up to a daily administration of 30 g can be given without any important side effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Independent and combined effects of amino acids and glucose after resistance exercise.

              This study was designed to assess the independent and combined effects of a dose of amino acids (approximately 6 g) and/or carbohydrate (approximately 35 g) consumed at 1 and 2 h after resistance exercise on muscle protein metabolism. Following initiation of a primed constant infusion of H -phenylalanine and N-urea, volunteers performed leg resistance exercise and then ingested one of three drinks (amino acids (AA), carbohydrate (CHO), or AA and CHO (MIX)) at 1- and 2-h postexercise.(5) Total net uptake of phenylalanine across the leg over 3 h was greatest in response to MIX and least in CHO. The individual values for CHO, MIX, and AA were 53 +/- 6, 114 +/- 38, and 71 +/- 13 mg x leg x 3h. Stimulation of net uptake in MIX was due to increased muscle protein synthesis. These findings indicate that the combined effect on net muscle protein synthesis of carbohydrate and amino acids given together after resistance exercise is roughly equivalent to the sum of the independent effects of either given alone. The individual effects of carbohydrate and amino acids are likely dependent on the amount of each that is ingested. Further, prior intake of amino acids and carbohydrate does not diminish the metabolic response to a second comparable dose ingested 1h later.
                Bookmark

                Author and article information

                Journal
                The Journal of Nutrition
                Oxford University Press (OUP)
                0022-3166
                1541-6100
                October 2008
                October 01 2008
                October 2008
                October 01 2008
                : 138
                : 10
                : 2045S-2049S
                Article
                10.1093/jn/138.10.2045S
                18806122
                7d074e2f-3dff-49b0-b6eb-0e31bf86533f
                © 2008
                History

                Comments

                Comment on this article