Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Probing Surface Hydration and Molecular Structure of Zwitterionic and Polyacrylamide Hydrogels.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A hydrogel is a hydrophilic cross-linked polymer network which can contain a large amount of water. Hydrogels with distinguished interfacial physical toughness were analyzed for their potential application as antifouling coating materials, utilizing sum frequency generation (SFG) spectroscopy as the interfacial analytical technique. The surface structures of one sulfobetaine (SBMA) zwitterionic hydrogel (ZWHG) and two polysaccharide hydrogels (PHGs) were probed in air; their interfacial structures with silica were examined using SFG in water and protein solutions, respectively. Both ZWHG and PHGs interfaces in water were dominated by strongly hydrogen-bonded water molecules, but the bonding strength associated with ZWHG was much stronger. Although all hydrogels experienced interfacial change in the presence of protein solutions, after cleaning, the zwitterionic hydrogel interface recovered almost completely while the other two hydrogels were subject to irreversible protein adsorption. Additionally, orientational analysis of ZWHG methyl groups in water was conducted and related to the superior hydrogen-bonding strength of water molecules at the ZWHG interface. The interfacial structures of hydrogel materials probed by SFG can be correlated to their antifouling properties. This research highlighted the critical role that hydrogen-bonding strength of interfacial water molecules play for antifouling applications.

          Related collections

          Author and article information

          Journal
          Langmuir
          Langmuir : the ACS journal of surfaces and colloids
          American Chemical Society (ACS)
          1520-5827
          0743-7463
          Oct 15 2019
          : 35
          : 41
          Affiliations
          [1 ] Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States.
          [2 ] Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States.
          [3 ] Department of Mechanic Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States.
          Article
          10.1021/acs.langmuir.9b02544
          31553882
          7d1c7c78-fa4a-4b46-8438-f31bad5ae214
          History

          Comments

          Comment on this article