15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of transcatheter aortic valve replacement on P-wave duration, P-wave dispersion and left atrial size

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          P-wave dispersion (PWD), a measure of heterogeneity of atrial refractoriness, is defined as the difference between the maximum and minimum P-wave duration. In patients with severe aortic stenosis (AS), P-wave duration and PWD were shown to be increased, indicating atrial electrical remodeling. However, the effect of transcatheter aortic valve replacement (TAVR) on P-wave morphology has not been established yet. The aim of this study is to assess the short and long-term effects of TAVR with two types of bioprosthetic valves on P-wave duration and PWD in association with left atrial (LA) size.

          Methods

          Fifty-two (36 female) eligible patients in sinus rhythm who underwent transfemoral TAVR between June 01, 2012 and July 31, 2014 with either a Medtronic CoreValve (MCV) ( n = 32) or an Edwards SAPIEN XT Valve ( n = 20) were enrolled. Standard 12-lead electrocardiogram and echocardiographic evaluations were performed pre-procedurally, post-TAVR day one and 6 months post-TAVR. P-wave duration and PWD were measured and correlation analyses with echocardiographic variables were performed.

          Results

          P-wave duration and PWD were significantly decreased on post-TAVR day one ( P < 0.05). They continued to decrease during the six month follow-up period, but were not significantly different from short-term values ( P > 0.05). The decrease of LA diameter was found significant at the sixth-months of follow-up ( P < 0.05). These changes were independent from the types of bioprosthetic valves implanted ( P > 0.05). A positive correlation was detected between minimum P-wave duration and maximum aortic valve gradients at post-TAVR day one ( r = 0.297, P = 0.032).

          Conclusions

          P-wave duration and PWD were significantly reduced early after TAVR indicating early reverse atrial electrical remodeling. Moreover, structural reverse remodeling of atrium was detected at the 6-months of follow-up. The effects of two types of bioprosthetic valves on atrial remodeling were similar.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans.

          Atrial fibrillation (AF) frequently complicates congestive heart failure (CHF). However, the electrophysiological substrate for AF in humans with CHF remains unknown. We evaluated the electrophysiological and electroanatomic characteristics of the atria in patients with CHF. Twenty-one patients (aged 53.7+/-13.6 years) with symptomatic CHF (left ventricular ejection fraction 25.5+/-6.0%) and 21 age-matched controls were studied. The following were evaluated: effective refractory periods (ERPs) from the high and low lateral right atrium (LRA), high septal right atrium, and distal coronary sinus (CS); conduction time along the CS and LRA; corrected sinus node recovery times; P-wave duration; and conduction at the crista terminalis. In a subset, electroanatomic mapping was performed to determine atrial activation, regional conduction velocity, double potentials, fractionated electrograms, regional voltage, and areas of electrical silence. Patients with CHF demonstrated an increase in atrial ERP with no change in the heterogeneity of refractoriness, an increase of atrial conduction time along the LRA and the CS, prolongation of the P-wave duration and corrected sinus node recovery times, and greater number and duration of double potentials along the crista terminalis. Electroanatomic mapping demonstrated regional conduction slowing with a greater number of electrograms with fractionation or double potentials, associated with areas of low voltage and electrical silence (scar). Patients with CHF demonstrated an increased propensity for AF with single extrastimuli, and induced AF was more often sustained. Atrial remodeling due to CHF is characterized by structural changes, abnormalities of conduction, sinus node dysfunction, and increased refractoriness. These abnormalities may be responsible in part for the increased propensity for AF in CHF.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            P-wave dispersion: a novel predictor of paroxysmal atrial fibrillation.

            The prolongation of intraatrial and interatrial conduction time and the inhomogeneous propagation of sinus impulses are well known electrophysiologic characteristics in patients with paroxysmal atrial fibrillation (AF). Previous studies have demonstrated that individuals with a clinical history of paroxysmal AF show a significantly increased P-wave duration in 12-lead surface electrocardiograms (ECG) and signal-averaged ECG recordings. The inhomogeneous and discontinuous atrial conduction in patients with paroxysmal AF has recently been studied with a new ECG index, P-wave dispersion. P-wave dispersion is defined as the difference between the longest and the shortest P-wave duration recorded from multiple different surface ECG leads. Up to now the most extensive clinical evaluation of P-wave dispersion has been performed in the assessment of the risk for AF in patients without apparent heart disease, in hypertensives, in patients with coronary artery disease and in patients undergoing coronary artery bypass surgery. P-wave dispersion has proven to be a sensitive and specific ECG predictor of AF in the various clinical settings. However, no electrophysiologic study has proven up to now the suspected relationship between the dispersion in the atrial conduction times and P-wave dispersion. The methodology used for the calculation of P-wave dispersion is not standardized and more efforts to improve the reliability and reproducibility of P-wave dispersion measurements are needed. P-wave dispersion constitutes a recent contribution to the field of noninvasive electrocardiology and seems to be quite promising in the field of AF prediction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alterations in atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation.

              Clinically, chronic atrial dilatation is associated with an increased incidence of atrial fibrillation (AF), but the underlying mechanism is not clear. We have investigated atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation (MR). Thirteen control and 19 MR dogs (1 month after partial mitral valve avulsion) were studied. Dogs in the MR group were monitored using echocardiography and Holter recording. In open-chest follow-up experiments, electrode arrays were placed on the atria to investigate conduction patterns, effective refractory periods, and inducibility of AF. Alterations in tissue structure and ultrastructure were assessed in atrial tissue samples. At follow-up, left atrial length in MR dogs was 4.09+/-0.45 cm, compared with 3.25+/-0.28 at baseline (P 1 hour) was inducible in 10 of 19 MR dogs and none of 13 control dogs (P<0.01). In the dilated MR left atrium, areas of increased interstitial fibrosis and chronic inflammation were accompanied by increased glycogen ultrastructurally. Chronic atrial dilatation in the absence of overt heart failure leads to an increased vulnerability to AF that is not based on a decrease in wavelength.
                Bookmark

                Author and article information

                Journal
                J Geriatr Cardiol
                J Geriatr Cardiol
                JGC
                Journal of Geriatric Cardiology : JGC
                Science Press
                1671-5411
                November 2015
                : 12
                : 6
                : 613-617
                Affiliations
                [1 ]Department of Cardiology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
                [2 ]Clinic of Cardiology, Idil State Hospital, Sirnak, Turkey
                Author notes
                Correspondence to: Huseyin Dursun, MD, Department of Cardiology, Faculty of Medicine, Dokuz Eylul University, 35420, Balcova/Izmir, Turkey. E-mail: drhuseyindursun@ 123456gmail.com Telephone:+90-505-7192150 Fax:+90-232-4330756
                Article
                jgc-12-06-613
                10.11909/j.issn.1671-5411.2015.06.016
                4712366
                26788037
                7d2b3430-3893-44ed-9f9e-881f5531e933
                Institute of Geriatric Cardiology

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License, which allows readers to alter, transform, or build upon the article and then distribute the resulting work under the same or similar license to this one. The work must be attributed back to the original author and commercial use is not permitted without specific permission.

                History
                : 11 May 2015
                : 16 October 2015
                : 27 October 2015
                Categories
                Research Article

                Cardiovascular Medicine
                aortic stenosis,p-wave dispersion,transcatheter aortic valve replacement

                Comments

                Comment on this article