16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An agent-based model simulation of influenza interactions at the host level: insight into the influenza-related burden of pneumococcal infections

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Host-level influenza virus–respiratory pathogen interactions are often reported. Although the exact biological mechanisms involved remain unelucidated, secondary bacterial infections are known to account for a large part of the influenza-associated burden, during seasonal and pandemic outbreaks. Those interactions probably impact the microorganisms’ transmission dynamics and the influenza public health toll. Mathematical models have been widely used to examine influenza epidemics and the public health impact of control measures. However, most influenza models overlooked interaction phenomena and ignored other co-circulating pathogens.

          Methods

          Herein, we describe a novel agent-based model (ABM) of influenza transmission during interaction with another respiratory pathogen. The interacting microorganism can persist in the population year round (endemic type, e.g. respiratory bacteria) or cause short-term annual outbreaks (epidemic type, e.g. winter respiratory viruses). The agent-based framework enables precise formalization of the pathogens’ natural histories and complex within-host phenomena. As a case study, this ABM is applied to the well-known influenza virus–pneumococcus interaction, for which several biological mechanisms have been proposed. Different mechanistic hypotheses of interaction are simulated and the resulting virus-induced pneumococcal infection (PI) burden is assessed.

          Results

          This ABM generates realistic data for both pathogens in terms of weekly incidences of PI cases, carriage rates, epidemic size and epidemic timing. Notably, distinct interaction hypotheses resulted in different transmission patterns and led to wide variations of the associated PI burden. Interaction strength was also of paramount importance: when influenza increased pneumococcus acquisition, 4–27% of the PI burden during the influenza season was attributable to influenza depending on the interaction strength.

          Conclusions

          This open-source ABM provides new opportunities to investigate influenza interactions from a theoretical point of view and could easily be extended to other pathogens. It provides a unique framework to generate in silico data for different scenarios and thereby test mechanistic hypotheses.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12879-017-2464-z) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          Respiratory viral infection predisposing for bacterial disease: a concise review.

          Although bacterial superinfection in viral respiratory disease is a clinically well documented phenomenon, the pathogenic mechanisms are still poorly understood. Recent studies have revealed some of the mechanisms involved. Physical damage to respiratory cells as a result of viral infection may lead to opportunistic adherence of bacteria. Enhanced bacterial adherence by specific mechanisms has been documented for respiratory cells infected with influenza A virus, respiratory syncytial virus and adenovirus in both in vitro and in vivo models. To date, results of various experimental studies indicate that different mechanisms for increased bacterial adherence induced by viruses are operating for specific viral-bacterial combinations. In the present review, a number of key findings obtained during the past two decades is presented and discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemiology and pathogenesis of influenza.

            M Zambon (1999)
            Influenza A, B and C all have a segmented genome, although only certain influenza A subtypes and influenza B cause severe disease in humans. The two major proteins of influenza are the surface glycoproteins-haemagglutinin (HA) and neuraminidase (NA). HA is the major antigen for neutralizing antibodies and is involved in the binding of virus particles to receptors on host cells. Pandemics are a result of novel virus subtypes of influenza A, created by reassortment of the segmented genome (antigenic shift), whereas annual epidemics are a result of evolution of the surface antigens of influenza A and B virus (antigenic drift). The rapid evolution of influenza viruses highlights the importance of surveillance in identifying novel circulating strains. Infectivity of influenza depends on the cleavage of HA by specific host proteases, whereas NA is involved in the release of progeny virions from the cell surface and prevents clumping of newly formed virus. In birds, the natural hosts of influenza, the virus causes gastrointestinal infection and is transmitted via the faeco-oral route. Virulent avian influenza strains, which cause systemic disease, have an HA that is cleaved by proteases present in all cells of the body, rather than by proteases restricted to the intestinal tract. In mammals, replication of influenza subtypes appears restricted to respiratory epithelial cells. Most symptoms and complications, therefore, involve the respiratory tract. However, systemic complications are sometimes observed and other viral genes besides the HA, including the NA, may be involved in determination of virulence of influenza strains in mammals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Seasonal patterns of invasive pneumococcal disease.

              Pneumococcal infections increase each winter, a phenomenon that has not been well explained. We conducted population-based active surveillance for all cases of invasive pneumococcal disease in seven states; plotted annualized weekly rates by geographic location, age, and latitude; and assessed correlations by time-series analysis. In all geographic areas, invasive pneumococcal disease exhibited a distinct winter seasonality, including an increase among children in the fall preceding that for adults and a sharp spike in incidence among adults each year between December 24 and January 7. Pneumococcal disease correlated inversely with temperature (r -0.82 with a 1-week lag; p<0.0001), but paradoxically the coldest states had the lowest rates, and no threshold temperature could be identified. The pattern of disease correlated directly with the sinusoidal variations in photoperiod (r +0.85 with a 5-week lag; p<0.0001). Seemingly unrelated seasonal phenomena were also somewhat correlated. The reproducible seasonal patterns in varied geographic locations are consistent with the hypothesis that nationwide seasonal changes such as photoperiod-dependent variation in host susceptibility may underlie pneumococcal seasonality, but caution is indicated in assigning causality as a result of such correlations.
                Bookmark

                Author and article information

                Contributors
                helene.arduin@pasteur.fr
                matthieu.domenech-de-celles@pasteur.fr
                didier.guillemot@pasteur.fr
                laurence.watier@inserm.fr
                lulla.opatowski@pasteur.fr
                Journal
                BMC Infect Dis
                BMC Infect. Dis
                BMC Infectious Diseases
                BioMed Central (London )
                1471-2334
                2 June 2017
                2 June 2017
                2017
                : 17
                : 382
                Affiliations
                Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases, UMR1181 - Université de Versailles Saint Quentin en Yvelines, Inserm, Institut Pasteur, B2PHI Unit – Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
                Author information
                http://orcid.org/0000-0002-5881-4635
                Article
                2464
                10.1186/s12879-017-2464-z
                5455134
                28577533
                7db23436-274e-4c57-aa5f-6c93f509c5ec
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 December 2016
                : 15 May 2017
                Funding
                Funded by: Université de Versailles Saint Quentin en Yvelines
                Funded by: Association Nationale de la Recherche
                Award ID: ANR-10-LABX-62-IBEID
                Funded by: Domaine d’Intérêt Majeur Maladies Infectieuses
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2017

                Infectious disease & Microbiology
                agent-based model,influenza,between-pathogens interaction,interference,transmission dynamics,pneumococcus,simulation,burden,mathematical model

                Comments

                Comment on this article