Perceived value is the customer’s subjective understanding of the value they obtain and is their subjective evaluation of the product or service they enjoy. This value is deducted from the cost of the product or service. In order to understand and predict the specific cognition of consumers on the value of products or services and distinguish it from the objective value of products or services in the general sense, this paper uses the in-depth learning method based on LSTM to establish a model to predict the perceived benefits of consumers. It is a challenging task to analyze the emotion of consumers or recognize the perceived value of consumers from various texts of online trading platforms. This paper proposes a new short-text representation method based on bidirectional LSTM. This method is very effective for forecasting research. In addition, we also use the attention mechanism to learn the specific emotional vocabulary. Short-text representation can be used for emotion classification and emotion intensity prediction. This paper evaluates the proposed classification model and regression data set. Compared with the baseline of the corresponding data set, the contrast of the results was 93%. The research shows that using deep neural network to predict the perceived utility of consumer comments can reduce the intervention of artificial features and labor costs and help predict the perceived utility of products to consumers.