8
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      As Plain as the Nose on Your Face: The Case for A Nasal (Mucosal) Route of Vaccine Administration for Covid-19 Disease Prevention

      discussion
      Frontiers in Immunology
      Frontiers Media S.A.
      vaccine, mucosal, IgA, IgG, antibody-dependent enhancement, Covid-19, intramuscular

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          At present, the target of most of the SARS-CoV-2 (Covid-19) vaccine development worldwide is the spike protein (S) or, more specifically, the receptor-binding domain (RBD) of the virus (1). According to The World Health Organization, almost all of these vaccines will be delivered parentally by intramuscular injection (2). The goal is to achieve broadly neutralizing IgG antibody production in response to a systemic viremia and contribute to the mucosal immune defense. However, questions remain about the relative impact that IgG makes to the mucosal response, whether or not it can provide durable immunity, especially in the aging population, and to what degree it contributes to the immunopathology of antibody-dependent enhancement (ADE). Despite the reliance on the intramuscular approach, mucosal administration of vaccines has been highly successful from ancient through modern times (3). The late Norwegian immunologist, Per Brandtzaeg, was a strong advocate for the intranasal administration of vaccines because of the regional effect that it has on the upper airways with the production of both systemic and mucosal IgA and systemic IgG immunoglobulins (4). He was also highly critical of the surgical removal of the adenoids and tonsils in children, in part, due to impaired responses to vaccines (5). Perhaps the pediatric population is being spared the ravages of the current pandemic due to the protective nature of the adenoids and tonsils. The tonsils and adenoids are part of the mucosal immune system known as Waldeyer’s ring or the nasal associated lymphoid tissue (NALT). This organized mucosal associated lymphatic tissue lies below the lamina propria of the nasal mucosa and is the primary inductive site for the secretory immune system (6). It is in this region where all the molecular and cellular conditions are available for the production of secretory IgA (S-IgA) by plasma cells and memory-type IgA+ B cells independently of the bone marrow (7). Plasma B cells produce both monomeric (sIgA) and polymeric (pIgA) multimers, dimers, tetramers and pentamers (8). This multivalency results in greater avidity for viral peptides than IgG (9) and prevents the infiltration of pathogens known as immune exclusion (10). The pIgA is actively transported across the cell membrane from the basolateral to the apical surface of the secretory epithelium by the secretory component (SC) of polymeric-immunoglobulin receptor (pIgR) as a secretory (SIgA) complex. As the SIgA reaches the surface of the uninfected cell, SC separates from the SIgA where both elements diffuse into the mucus layer and provide specific protective mechanisms (11). In vitro, free SC binds to IL-8 and inhibits IL-8-mediated recruitment of neutrophils to prevent neutrophil extracellular traps in the airways (see below) (12, 13). If a cell has become infected by a virus, pIgA complex is absorbed through the basal membrane by the pIgR where it is then internalized into the endoplasmic reticulum leading to the intracellular neutralization of newly formed viral proteins which are then eliminated through the apical surface into the intestinal or airway lumen (14). The expression of the peripheral node addressin (PNAd) by the high-walled endothelial venules of the NALT accounts for the trafficking of B and T lymphocytes to the salivary, parotid and submaxillary gland lymph nodes (15, 16) where plasma B cells then migrate to the salivary and parotid glands to express IgA that offers protection against bacterial pathogens produced in the oral cavity as well as inhaled airborne virions (17). The PNAd derived from NALT also promotes a mucosal and systemic humoral response that includes that includes the lungs (18) and the genital mucosa (19). Given that PNAd is expressed by the HEV in the NALT and bronchial associated lymphatic tissues, its role in cellular immunity in response to vaccination is paramount since up to 80% of lymphocytes in human tonsils are CD8+ memory cells (20). On the other hand, naïve T cells were excluded from the mucosal-associated tissue in mice that were challenged with influenza virus that suggested a mechanism of immune tolerance in the upper airway. The activation of CD8+ cells by intranasal boosting with a recombinant vaccinia virus encoding the spike protein of the SARS-CoV in mice resulted in pathogen clearance from a lethal challenge of the virus (21). However, in Covid-19 patients, lymphopenia is the hallmark of disease progression (22) and in particular, CD8+ and natural killer cells (NK) decreased with progression of the disease (23). Not only does the innate immune response fail to protect against Covid-19, but it may be the underlying cause of the increased morbidity and mortality (24). A large body of literature has demonstrated that protection of the lungs is afforded by nasal administration of a variety of viral and bacterial vaccines (25–27). While there are concerns about the durability of IgG antibodies to Covid-19 (28), IgA antibodies to influenza generated by the diffuse NALT lining the nasal passages lasted for the life of the animal (29). The Covid-19 infection epitomizes a mucosal disease process. Close contact, aerosol droplets, and fomites facilitate the transmission of the virus where it comes into contact with the oronasal and conjunctival mucosa. Here, the spike protein of the virus binds to the angiotensin-converting enzyme-2 (ACE2) receptor of the target cells capable of replicating the virus (30). The nasal epithelium has the highest concentration of ACE2, and the alveoli have the lowest (31). These findings reflect that the most robust replication of the virus likely takes place in the nose and little or none in the alveoli (32). Furthermore, the epithelial cells lining the salivary gland ducts that are rich in the expression of ACE2 actively produce virions (33) that are spread through aerosol droplets (34) that may be inhaled or aspirated into the lung. (31, 35) However, since IgA seroconversion occurs two days after the onset of infection, and is detected earlier than IgM or IgG in Covid-19 patients (36), its presence in the saliva not only provides the basis for point-of-care diagnostic testing (37) but further supports the use of the intranasal administration of a vaccine in order to neutralize the virus at its source—the upper airway. However, despite the presence of antigen presenting cells in the nasal and oral mucosa, SARS-CoV-1 was able to evade this innate immune response in Rhesus macaques (RM), and within two days post infection (dpi) had breached the upper respiratory epithelium where it infected the underlying mucosal dendritic cells and macrophages that subsequently migrated from Waldeyer’s ring to draining lymph nodes and into the lungs where they formed dense clusters around the alveoli (38). The sequestration of virus in intracellular vesicles of the macrophages demonstrates the critical role that these antigen presenting cells (APC) play in the dissemination of the virus to the lung and systemic compartment especially since viral shedding of Covid-19 in the pharynx precedes viral replication in the lungs (39). While pre-existing immunity is considered beneficial, there is great concern that the accelerated pace to develop a vaccine against SARS-CoV-2 will result in a detrimental immune response, i.e., an antibody-dependent enhancement (ADE) of the infection (40). Particularly disturbing is the fact that as a result of prior exposure to the “common cold coronavirus” (CCC), T cell reactivity to SARS-CoV-2 antigen peptide pools is in the 20–50% range in unexposed blood donors from across the globe (41). In fact, one study showed that 90% of the human race tested positive for three of the four CCCs (42). A recent study showed that 35% of seronegative Covid-19 healthy donors had cross-reactive CD4+ T cells to the S protein probably acquired from previous infections with human coronaviruses (43). The presence of durable cross-reactive T cell memory responses would play a role in amplifying an anamnestic B cell response against those common antigens (44, 45). Thus, prior sensitization to conserved epitopes could lead to the production of non- neutralizing or sub-neutralizing binding antibodies, principally of the IgG isotype, and form antigen-antibody complexes. These immune complexes (IC) act as molecular bridges between a virus and immune cells (46) expressing either a complement receptor, IgG Fc receptor (FcγR) on the surface and neonatal Fc receptor (FcRn) (47) intracellularly. The FcγR can function as a mimic for the ACE2 receptor that is not expressed on all immune cells and allows for neutralizing antibodies to gain access to the reproductive machinery of those cells (48). Ultimately, the ratio of activating versus inhibitory FcγRs will determine the severity of the disease based on the subtype of IgG that it binds and the subsequent signaling cascades it produces (49). When the IC binds to an activating FcγR on APCs it also results in the production of proinflammatory cytokines and chemokines that lead to lung and other organ injury (50, 51). This hypercytokinemia causes an increased transudate and production of hyaluronan in the alveoli that absorbs up to 1,000 times its molecular weight with water resulting in the severe acute respiratory syndrome (SARS) and death (52). Even though ADE is primarily associated with IgG antibodies, the phenomenon has also been observed with IgA antibodies in HIV infection (53, 54). However, other than HIV, IgA has not been identified with ADE in any other viral infection. Two recent studies confirmed that fully neutralizing IgG antibodies led to disease enhancement. One study showed that monoclonal antibodies targeting the MERS-CoV RBD caused a conformational change in the spike protein that blocked viral entry into cells expressing its cognate receptor, dipeptidyl peptidase 4 and directed its entry into FcγR expressing cells (55). In the second study, an IM vaccination that produced an anti-spike IgG (S-IgG) and an intravenous administration of S-IgG monoclonal antibodies correlated with acute lung injury during a SARS-CoV infection of RM (56). Although the anti-S-IgG reduced the expression of viral RNA in the lungs, it led to a massive accumulation of monocyte/macrophages within 2 dpi that caused significant diffuse alveolar damage. An antibody directed against the FcγR reduced the production of IL-8 and MCP1 by wound-healing macrophages suggesting that the mechanism of acute lung injury was mediated by the anti-S-IgG antibody. It is not known if the expression of neonatal Fc receptor (FcRn) in the endothelial, airway and gastrointestinal tissues (57) plays a role in IgG mediated enhancement of SARS-CoV-2. Coronaviruses as well as other viruses that form immune complexes with IgG antibodies are transcytosed through the plasma membrane and transported intracellularly by the FcRn into the endosomal system (58). Both the IgG antibody (59) and the mouse hepatitis virus, a prototypic member of the CoV family (60), depend on the same Rab GTPases in the endosomal system for the recycling of IgG and for the proteolytic processing of their fusion proteins respectively. This escorted means of endocytosis of the virus could be the underlying mechanism of the endovascular events observed late in the infection (61). Of particular note, 82% of the cases of Kawasaki-like disease in children in France had IgG antibodies for SARS-CoV-2 (62). Although the induction of a mucosal response by systemic immunization remains poorly understood (63), the use of an appropriate adjuvant could change the outcome and lead to the expression of IgA (64). Nevertheless, the intranasal administration of a vaccine is inherently associated with an IgA response. An additional benefit of IgA is based on its non-inflammatory effects since neither the secreted, monomeric form (sIgA) found in serum nor the secretory, polymeric form (S-IgA) found in mucosal secretions activate any of the three complement pathways (65, 66). And, when bound to the antigen, IgA blocks the binding of IgG and IgM and thus prevents the complement-mediated inflammatory effects associated with these isotypes (67). Furthermore, all forms of the IgA antibody, serum and secretory, monoclonal and polyclonal, interfered with complement-dependent phagocytosis by neutrophils mediated by IgG antibodies (66). This would be beneficial in limiting the recruitment of neutrophils to the lungs and the inflammasomes associated with viral infections (68). In the context of a coronavirus vaccine, two separate studies compared the efficacy of an intramuscular versus a mucosal route. The first study used a recombinant adeno-associated virus (rAAV)-based RBD (RBD-rAAV) vaccine to the SARS-CoV spike protein (69) and the second studied three adenovirus-based vaccine candidates against MERS-CoV (70). In both studies, the intranasal route was superior to the IM route in terms of a systemic and local humoral response, and both had a stronger systemic and pulmonary CTL response. However, neither the IM nor intranasal administration of the SARS-CoV RBD-rAAV vaccine produced any ADE which the authors attributed to the properties of the adenovirus vector and its specificity for the particular epitope within the RBD. But perhaps most importantly, only the intranasal and subligual administration of the MERS-CoV full-length spike protein induced IgA antibodies that were found in the broncholaveolar lavage fluid. Thus far, only one paper has clearly substantiated the validity of previous articles that support the nasal administration of a Covid-19 vaccine (71) although a number of academic and biopharma entities have announced their successes with press releases. While IgA is the most highly expressed antibody in the body, its production by the mucosal-associated lymphatic tissue declines with age. This decline is one aspect of a condition known as immunosenescence that is particularly relevant in the current pandemic caused by Covid-19 in which the elderly are the most vulnerable population. However, a study in mice showed that the aging process affects the NALT to a lesser degree than the gastrointestinal associated lymphatic tissue (72). This suggests that all of the necessary immunocompetent cells are maintained in the nasal mucosa to mount an effective immune response. However, the need still remains to determine an appropriate adjuvant for mucosal administration (73) of a Covid-19 vaccine especially one that would avoid a Th17 response that contributes to the eosinophilic infiltration in the lungs (74). If seen only from an immunological perspective, the IM administration of a vaccine is not without its drawbacks (75). There is a significant concern about the lack of availability of vials, needles, and syringes to meet the global demand. Then, there is the need for trained personnel to administer the vaccine intramuscularly that can result in as many as five needle-stick injuries per 100 injections worldwide (76). Also, there may be poor compliance due to the anticipated pain at the injection site and concerns about the arms race mentality that may have flattened the traditional trajectory required for a safe and effective vaccine. And, lastly, there is a significant concern for the reuse of needles and syringes in developing countries that can lead to blood-borne viral infections and for the proper disposal of this medical waste in these countries. Regulatory agencies worldwide should require a comparison of the parenteral administration with mucosal delivery and accelerate the approval of the appropriate adjuvants, particularly for the aging population. If successful, mucosal delivery will play a protective role in preventing the invasion of the virus early in the infectious process and prevent the viremia to which an IgG response is also generated. Mucosal delivery also represents a more cost-effective and efficient means of delivering a vaccine in the time of a pandemic. And ultimately, there is less likelihood of an immunopathological immune response known as ADE that is invariably associated with IgG. Author Contributions The author confirms being the sole contributor of this work and has approved it for publication. Conflict of Interest CT is the Founder and President of Immugen Pharma LLC.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein

          Summary The emergence of SARS-CoV-2 has resulted in >90,000 infections and >3,000 deaths. Coronavirus spike (S) glycoproteins promote entry into cells and are the main target of antibodies. We show that SARS-CoV-2 S uses ACE2 to enter cells and that the receptor-binding domains of SARS-CoV-2 S and SARS-CoV S bind with similar affinities to human ACE2, correlating with the efficient spread of SARS-CoV-2 among humans. We found that the SARS-CoV-2 S glycoprotein harbors a furin cleavage site at the boundary between the S1/S2 subunits, which is processed during biogenesis and sets this virus apart from SARS-CoV and SARS-related CoVs. We determined cryo-EM structures of the SARS-CoV-2 S ectodomain trimer, providing a blueprint for the design of vaccines and inhibitors of viral entry. Finally, we demonstrate that SARS-CoV S murine polyclonal antibodies potently inhibited SARS-CoV-2 S mediated entry into cells, indicating that cross-neutralizing antibodies targeting conserved S epitopes can be elicited upon vaccination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Virological assessment of hospitalized patients with COVID-2019

            Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Longitudinal analyses reveal immunological misfiring in severe COVID-19

              Recent studies have provided insights into the pathogenesis of coronavirus disease 2019 (COVID-19) 1–4 . However, the longitudinal immunological correlates of disease outcome remain unclear. Here we serially analysed immune responses in 113 patients with moderate or severe COVID-19. Immune profiling revealed an overall increase in innate cell lineages, with a concomitant reduction in T cell number. An early elevation in cytokine levels was associated with worse disease outcomes. Following an early increase in cytokines, patients with moderate COVID-19 displayed a progressive reduction in type 1 (antiviral) and type 3 (antifungal) responses. By contrast, patients with severe COVID-19 maintained these elevated responses throughout the course of the disease. Moreover, severe COVID-19 was accompanied by an increase in multiple type 2 (anti-helminths) effectors, including interleukin-5 (IL-5), IL-13, immunoglobulin E and eosinophils. Unsupervised clustering analysis identified four immune signatures, representing growth factors (A), type-2/3 cytokines (B), mixed type-1/2/3 cytokines (C), and chemokines (D) that correlated with three distinct disease trajectories. The immune profiles of patients who recovered from moderate COVID-19 were enriched in tissue reparative growth factor signature A, whereas the profiles of those with who developed severe disease had elevated levels of all four signatures. Thus, we have identified a maladapted immune response profile associated with severe COVID-19 and poor clinical outcome, as well as early immune signatures that correlate with divergent disease trajectories.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                30 September 2020
                2020
                30 September 2020
                : 11
                : 591897
                Affiliations
                [1] Immugen Pharma LLC , South Miami, FL, United States
                Author notes

                Edited by: Anke Huckriede, University Medical Center Groningen, Netherlands

                Reviewed by: Kohtaro Fujihashi, University of Alabama at Birmingham, United States; Nils Yngve Lycke, University of Gothenburg, Sweden

                *Correspondence: Craig R. Travis, crt@ 123456immugen.com

                This article was submitted to Vaccines and Molecular Therapeutics, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.591897
                7561361
                33117404
                7dbf59e4-395f-46a4-a253-238b957393b8
                Copyright © 2020 Travis

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 August 2020
                : 17 September 2020
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 76, Pages: 5, Words: 2618
                Categories
                Immunology
                Opinion

                Immunology
                vaccine,mucosal,iga,igg,antibody-dependent enhancement,covid-19,intramuscular
                Immunology
                vaccine, mucosal, iga, igg, antibody-dependent enhancement, covid-19, intramuscular

                Comments

                Comment on this article