24
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Dynamic versus Static Compliance of the Carotid Artery in Living Wistar-Kyoto Rats

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Arteries, when they are subjected in vitro to cyclic loading and unloading, are reported to be stiffer than in static conditions and to be poorly influenced by changes in vasomotor tone. However, such parameters have never been studied in living animals. This study used very high resolution echotracking technics to evaluate pulsatile changes of carotid blood pressure and diameter and the resulting dynamic pressure-cross-sectional (CSA) curve in anesthetized Wistar-Kyoto rats before and following changes of arteriolar vasomotor tone produced by vasoconstrictive [phenylephrine, L-N<sup>G</sup> nitro-arginine (LNA)] or vasodilating (hydralazine, nitroprusside) agents. Phenylephrine and LNA caused a progressive upward shift of the pressure-CSA curve toward significantly higher values of mean blood pressure and diameter. Since the two vasoconstrictive agents produced exactly the same arterial hemodynamic pattern, their effects may be considered as ‘passive’, i.e. predominantly due to the mechanical effect of pressure distension. From this observation, a simple model was validated, permitting evaluation in vivo of the passive static properties of the pressure-CSA curve from the relationship between mean arterial diameter and mean arterial pressure at the various steady states produced by the two vasoconstrictive agents. This static relationship had a significantly steeper slope than the corresponding dynamic relationships determined for the same steady-state mean arterial pressures. With hydralazine, a downward shift of the pulsatile pressure-CSA curve was obtained, with exactly the same characteristics as for phenylephrine and LNA, but within lower ranges of blood pressure and with a corresponding decrease in arterial diameter. In contrast, nitroprusside shifted the pulsatile pressure diameter curve toward both lower values of blood pressure and higher values of arterial diameter, thus indicating an active change in arterial tone. At any given value of mean blood pressure and arterial diameter, operational pulsatile compliance was significantly higher with sodium nitroprusside than with hydralazine. This study provides evidence that in living rats (1) the described static carotid pressure-diameter curve has a significantly steeper slope than the corresponding dynamic curve for the same mean arterial pressure, (2) for the same mean arterial pressure and diameter, sodium nitroprusside has a significantly higher dynamic compliance than hydralazine, implicating the role of nonhemodynamic factors in the stiffness changes, and (3) vasomotor tone influences markedly the dynamic pressure-diameter (or CSA) curve within intermediate and lower blood pressure ranges through active mechanisms involving the GMP cyclic pathway.

          Related collections

          Author and article information

          Journal
          JVR
          J Vasc Res
          10.1159/issn.1018-1172
          Journal of Vascular Research
          S. Karger AG
          1018-1172
          1423-0135
          1995
          1995
          24 September 2008
          : 32
          : 4
          : 254-265
          Affiliations
          aDepartment of Internal Medicine, and bDepartment of Pharmacology, INSERM (U 337), Broussais Hospital, Paris, France
          Article
          159100 J Vasc Res 1995;32:254–265
          10.1159/000159100
          7654882
          7df4758f-859e-41d1-8bbb-ecb31ff92788
          © 1995 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          History
          : 19 December 1994
          : 05 April 1995
          Page count
          Pages: 12
          Categories
          Research Paper

          General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
          Dynamic arterial compliance,Vasomotor tone,Arteries,Echo-tracking technics

          Comments

          Comment on this article