Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hypoxia Can Induce Migration of Glioblastoma Cells Through a Methylation-Dependent Control of ODZ1 Gene Expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The transmembrane protein ODZ1 has been associated with the invasive capacity of glioblastoma (GBM) cells through upregulation of RhoA/ROCK signaling, but the mechanisms triggering the ODZ1 pathway remain elusive. In addition, it is widely accepted that hypoxia is one of the main biological hallmarks of the GBM microenvironment and it is associated with treatment resistance and poor prognosis. Here we show that hypoxic tumor regions express higher levels of ODZ1 and that hypoxia induces ODZ1 expression in GBM cells by regulating the methylation status of the ODZ1 promoter. Hypoxia-induced upregulation of ODZ1 correlates with higher migration capacity of GBM cells that is drastically reduced by knocking down ODZ1. In vitro methylation of the promoter decreases its transactivation activity and we found a functionally active CpG site at the 3'end of the promoter. This site is hypermethylated in somatic neural cells and mainly hypomethylated in GBM cells. Mutagenesis of this CpG site reduces the promoter activity in response to hypoxia. Overall, we identify hypoxia as the first extracellular activator of ODZ1 expression and describe that hypoxia controls the levels of this migration-inducer, at least in part, by regulating the methylation status of the ODZ1 gene promoter.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          A restricted cell population propagates glioblastoma growth following chemotherapy

          Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor, with a median survival of about one year 1 . This poor prognosis is due to therapeutic resistance and tumor recurrence following surgical removal. Precisely how recurrence occurs is unknown. Using a genetically-engineered mouse model of glioma, we identify a subset of endogenous tumor cells that are the source of new tumor cells after the drug, temozolomide (TMZ), is administered to transiently arrest tumor growth. A Nestin-ΔTK-IRES-GFP (Nes-ΔTK-GFP) transgene that labels quiescent subventricular zone adult neural stem cells also labels a subset of endogenous glioma tumor cells. Upon arrest of tumor cell proliferation with TMZ, pulse-chase experiments demonstrate a tumor re-growth cell hierarchy originating with the Nes-ΔTK-GFP transgene subpopulation. Ablation of the GFP+ cells with chronic ganciclovir administration significantly arrested tumor growth and combined TMZ-ganciclovir treatment impeded tumor development. These data indicate the existence of a relatively quiescent subset of endogenous glioma cells that are responsible for sustaining long-term tumor growth through the production of transient populations of highly proliferative cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future.

            We have come a long way since the first reports of the existence of aberrant DNA methylation in human cancer. Hypermethylation of CpG islands located in the promoter regions of tumor suppressor genes is now firmly established as an important mechanism for gene inactivation. CpG island hypermethylation has been described in almost every tumor type. Many cellular pathways are inactivated by this type of epigenetic lesion: DNA repair (hMLH1, MGMT), cell cycle (p16(INK4a), p15(INK4b), p14(ARF)), apoptosis (DAPK), cell adherence (CDH1, CDH13), detoxification (GSTP1), etc em leader However, we still know little of the mechanisms of aberrant methylation and why certain genes are selected over others. Hypermethylation is not an isolated layer of epigenetic control, but is linked to the other pieces of the puzzle such as methyl-binding proteins, DNA methyltransferases and histone deacetylase, but our understanding of the degree of specificity of these epigenetic layers in the silencing of specific tumor suppressor genes remains incomplete. The explosion of user-friendly technologies has given rise to a rapidly increasing list of hypermethylated genes. Careful functional and genetic studies are necessary to determine which hypermethylation events are truly relevant for human tumorigenesis. The development of CpG island hypermethylation profiles for every form of human tumors has yielded valuable pilot clinical data in monitoring and treating cancer patients based in our knowledge of DNA methylation. Basic and translational will both be needed in the near future to fully understand the mechanisms, roles and uses of CpG island hypermethylation in human cancer. The expectations are high.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor hypoxia causes DNA hypermethylation by reducing TET activity

              Summary Hypermethylation of tumor suppressor gene (TSG) promoters confers growth advantages to cancer cells, but how these changes arise is poorly understood. Here, we report that tumor hypoxia reduces the activity of oxygen-dependent TET enzymes, which catalyze DNA de-methylation through 5-methylcytosine oxidation. This occurs independently of hypoxia-associated alterations in TET expression, proliferation, metabolism, HIF activity or reactive oxygen, but directly depends on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro. Also in patients, TSG promoters are markedly more methylated in hypoxic tumors, independently of proliferation, stromal cell infiltration and tumor characteristics. Our data suggest cellular selection of hypermethylation events, with almost half of them being ascribable to hypoxia across tumor types. Accordingly, increased hypoxia after vessel pruning in murine breast tumors increases hypermethylation, while restored tumor oxygenation by vessel normalization abrogates this effect. Tumor hypoxia thus acts as a novel regulator underlying DNA methylation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                10 October 2019
                2019
                : 9
                : 1036
                Affiliations
                [1] 1Department of Neurological Surgery and Spine Unit, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL) , Santander, Spain
                [2] 2MacFeeters-Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre , Toronto, ON, Canada
                [3] 3Genetics Unit, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL) , Santander, Spain
                [4] 4Department of Pathology, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL) , Santander, Spain
                [5] 5Division of Neurosurgery, Toronto Western Hospital/University Health Network, University of Toronto , Toronto, ON, Canada
                Author notes

                Edited by: Vidya Gopalakrishnan, University of Texas MD Anderson Cancer Center, United States

                Reviewed by: Shwetal Mehta, Barrow Neurological Institute (BNI), United States; Richard L. Carpenter, Indiana University, United States

                *Correspondence: José L. Fernández-Luna joseluis.fernandezl@ 123456scsalud.es

                This article was submitted to Neuro-Oncology and Neurosurgical Oncology, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2019.01036
                6795711
                31649891
                7df82084-ef35-4d94-a304-3602817810e6
                Copyright © 2019 Velásquez, Mansouri, Gutiérrez, Mamatjan, Mollinedo, Karimi, Singh, Terán, Martino, Zadeh and Fernández-Luna.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 July 2019
                : 24 September 2019
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 32, Pages: 9, Words: 5430
                Funding
                Funded by: Instituto de Salud Carlos III 10.13039/501100004587
                Funded by: Brain Tumour Foundation of Canada 10.13039/501100000238
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                glioblastoma,methylation,odz1,migration,hypoxia,teneurin
                Oncology & Radiotherapy
                glioblastoma, methylation, odz1, migration, hypoxia, teneurin

                Comments

                Comment on this article