35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Understanding Ebola Virus Transmission

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An unprecedented number of Ebola virus infections among healthcare workers and patients have raised questions about our understanding of Ebola virus transmission. Here, we explore different routes of Ebola virus transmission between people, summarizing the known epidemiological and experimental data. From this data, we expose important gaps in Ebola virus research pertinent to outbreak situations. We further propose experiments and methods of data collection that will enable scientists to fill these voids in our knowledge about the transmission of Ebola virus.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises

          Summary The epidemics of severe acute respiratory syndrome (SARS) in 2003 highlighted both short- and long-range transmission routes, i.e. between infected patients and healthcare workers, and between distant locations. With other infections such as tuberculosis, measles and chickenpox, the concept of aerosol transmission is so well accepted that isolation of such patients is the norm. With current concerns about a possible approaching influenza pandemic, the control of transmission via infectious air has become more important. Therefore, the aim of this review is to describe the factors involved in: (1) the generation of an infectious aerosol, (2) the transmission of infectious droplets or droplet nuclei from this aerosol, and (3) the potential for inhalation of such droplets or droplet nuclei by a susceptible host. On this basis, recommendations are made to improve the control of aerosol-transmitted infections in hospitals as well as in the design and construction of future isolation facilities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a predictor of outcome.

            The largest outbreak on record of Ebola hemorrhagic fever (EHF) occurred in Uganda from August 2000 to January 2001. The outbreak was centered in the Gulu district of northern Uganda, with secondary transmission to other districts. After the initial diagnosis of Sudan ebolavirus by the National Institute for Virology in Johannesburg, South Africa, a temporary diagnostic laboratory was established within the Gulu district at St. Mary's Lacor Hospital. The laboratory used antigen capture and reverse transcription-PCR (RT-PCR) to diagnose Sudan ebolavirus infection in suspect patients. The RT-PCR and antigen-capture diagnostic assays proved very effective for detecting ebolavirus in patient serum, plasma, and whole blood. In samples collected very early in the course of infection, the RT-PCR assay could detect ebolavirus 24 to 48 h prior to detection by antigen capture. More than 1,000 blood samples were collected, with multiple samples obtained from many patients throughout the course of infection. Real-time quantitative RT-PCR was used to determine the viral load in multiple samples from patients with fatal and nonfatal cases, and these data were correlated with the disease outcome. RNA copy levels in patients who died averaged 2 log(10) higher than those in patients who survived. Using clinical material from multiple EHF patients, we sequenced the variable region of the glycoprotein. This Sudan ebolavirus strain was not derived from either the earlier Boniface (1976) or Maleo (1979) strain, but it shares a common ancestor with both. Furthermore, both sequence and epidemiologic data are consistent with the outbreak having originated from a single introduction into the human population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Infection risks following accidental exposure to blood or body fluids in health care workers: A review of pathogens transmitted in published cases

              Hospital staff and all other human or veterinary health care workers, including laboratory, research, emergency service, or cleaning personnel are exposed to the risk of occupational infection following accidental exposure to blood or body fluids (BBF) contaminated with a virus, a bacteria, a parasite, or a yeast. The human immunodeficiency virus (HIV) or those of hepatitis B (HBV) or C (HCV) account for most of this risk in France and worldwide. Many other pathogens, however, have been responsible for occupational infections in health care workers following exposure to BBF, some with unfavorable prognosis. In developed countries, a growing number of workers are referred to clinicians responsible for the evaluation of occupational infection risks following accidental exposure. Although their principal task remains the evaluation of the risks of HIV, HBV, or HCV transmission and the possible usefulness of postexposure prophylaxis, these experts are also responsible for evaluating risks of occupational infection with other emergent or more rare pathogens and their possible timely prevention. The determinants of the risks of infection and the characteristics of described cases are discussed in this article.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                03 February 2015
                February 2015
                : 7
                : 2
                : 511-521
                Affiliations
                Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; E-Mails: sethdjudson@ 123456gmail.com (S.J.); prescottjb@ 123456niaid.nih.gov (J.P.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: munstervj@ 123456niaid.nih.gov ; Tel.: +1-406-375-7489.
                Article
                viruses-07-00511
                10.3390/v7020511
                4353901
                25654239
                7e130e9c-73a9-4b6c-827d-e060930d5949
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 07 December 2014
                : 29 January 2015
                Categories
                Review

                Microbiology & Virology
                ebola virus,transmission,epidemiology,experiments,airborne,fomite,droplet,environmental stability,bsl-4,filovirus

                Comments

                Comment on this article