38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Angiotensin II-induced endothelial dysfunction is temporally linked with increases in interleukin-6 and vascular macrophage accumulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Angiotensin II (Ang II) is associated with vascular hypertrophy, endothelial dysfunction and activation of a number of inflammatory molecules, however the linear events involved in the development of hypertension and endothelial dysfunction produced in response to Ang II are not well defined. The goal of this study was to examine the dose- and temporal-dependent development of endothelial dysfunction in response to Ang II. Blood pressure and responses of carotid arteries were examined in control (C57Bl/6) mice and in mice infused with 50, 100, 200, 400, or 1000 ng/kg/min Ang II for either 14 or 28 Days. Infusion of Ang II was associated with graded and marked increases in systolic blood pressure and plasma Ang II concentrations. While low doses of Ang II (i.e., 50 and 100 ng/kg/min) had little to no effect on blood pressure or endothelial function, high doses of Ang II (e.g., 1000 ng/kg/min) were associated with large increases in arterial pressure and marked impairment of endothelial function. In contrast, intermediate doses of Ang II (200 and 400 ng/kg/min) while initially having no effect on systolic blood pressure were associated with significant increases in pressure over time. Despite increasing blood pressure, 200 ng/kg/min had no effect on endothelial function, whereas 400 ng/kg/min produced modest impairment on Day 14 and marked impairment of endothelial function on Day 28. The degree of endothelial dysfunction produced by 400 and 1000 ng/kg/min Ang II was reflective of parallel increases in plasma IL-6 levels and vascular macrophage content, suggesting that increases in arterial blood pressure precede the development of endothelial dysfunction. These findings are important as they demonstrate that along with increases in arterial pressure that increases in IL-6 and vascular macrophage accumulation correlate with the impairment of endothelial function produced by Ang II.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Knockout rats via embryo microinjection of zinc-finger nucleases.

          The toolbox of rat genetics currently lacks the ability to introduce site-directed, heritable mutations into the genome to create knockout animals. By using engineered zinc-finger nucleases (ZFNs) designed to target an integrated reporter and two endogenous rat genes, Immunoglobulin M (IgM) and Rab38, we demonstrate that a single injection of DNA or messenger RNA encoding ZFNs into the one-cell rat embryo leads to a high frequency of animals carrying 25 to 100% disruption at the target locus. These mutations are faithfully and efficiently transmitted through the germline. Our data demonstrate the feasibility of targeted gene disruption in multiple rat strains within 4 months time, paving the way to a humanized monoclonal antibody platform and additional human disease models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction.

            We have shown previously that T cells are required for the full development of angiotensin II-induced hypertension. However, the specific subsets of T cells that are important in this process are unknown. T helper 17 cells represent a novel subset that produces the proinflammatory cytokine interleukin 17 (IL-17). We found that angiotensin II infusion increased IL-17 production from T cells and IL-17 protein in the aortic media. To determine the effect of IL-17 on blood pressure and vascular function, we studied IL-17(-/-) mice. The initial hypertensive response to angiotensin II infusion was similar in IL-17(-/-) and C57BL/6J mice. However, hypertension was not sustained in IL-17(-/-) mice, reaching levels 30-mm Hg lower than in wild-type mice by 4 weeks of angiotensin II infusion. Vessels from IL-17(-/-) mice displayed preserved vascular function, decreased superoxide production, and reduced T-cell infiltration in response to angiotensin II. Gene array analysis of cultured human aortic smooth muscle cells revealed that IL-17, in conjunction with tumor necrosis factor-alpha, modulated expression of >30 genes, including a number of inflammatory cytokines/chemokines. Examination of IL-17 in diabetic humans showed that serum levels of this cytokine were significantly increased in those with hypertension compared with normotensive subjects. We conclude that IL-17 is critical for the maintenance of angiotensin II-induced hypertension and vascular dysfunction and might be a therapeutic target for this widespread disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury.

              Angiotensin (Ang) II induces hypertension by mechanisms mediated in part by adaptive immunity and T effector lymphocytes. T regulatory lymphocytes (Tregs) suppress T effector lymphocytes. We questioned whether Treg adoptive transfer would blunt Ang II-induced hypertension and vascular injury. Ten- to 12-week-old male C57BL/6 mice were injected IV with 3 ×10(5) Treg (CD4(+)CD25(+)) or T effector (CD4(+)CD25(-)) cells, 3 times at 2-week intervals, and then infused or not with Ang II (1 μg/kg per minute, SC) for 14 days. Ang II increased systolic blood pressure by 43 mm Hg (P<0.05), NADPH oxidase activity 1.5-fold in aorta and 1.8-fold in the heart (P<0.05), impaired acetylcholine vasodilatory responses by 70% compared with control (P<0.05), and increased vascular stiffness (P<0.001), mesenteric artery vascular cell adhesion molecule expression (2-fold; P<0.05), and aortic macrophage and T-cell infiltration (P<0.001). All of the above were prevented by Treg but not T effector adoptive transfer. Ang II caused a 43% decrease in Foxp3(+) cells in the renal cortex, whereas Treg adoptive transfer increased Foxp3(+) cells 2-fold compared with control. Thus, Tregs suppress Ang II-mediated vascular injury in part through anti-inflammatory actions. Immune mechanisms modulate Ang II-induced blood pressure elevation, vascular oxidative stress, inflammation, and endothelial dysfunction.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                29 October 2014
                2014
                : 5
                : 396
                Affiliations
                [1] 1Department of Pharmacology, The University of Mississippi Medical Center Jackson, MS, USA
                [2] 2Department of Neurology, The University of Mississippi Medical Center Jackson, MS, USA
                Author notes

                Edited by: Timothy R. Nurkiewicz, West Virginia University, USA

                Reviewed by: Amanda Jo LeBlanc, University of Louisville and Jewish Hospital, USA; Matthew Zimmerman, University of Nebraska Medical Center, USA

                *Correspondence: Sean P. Didion, Departments of Pharmacology and Neurology, The University of Mississippi Medical Center, Arthur C. Guyton Laboratory Research Building, G311-313, 2500 North State Street, Jackson, MS 39216-4505, USA e-mail: didionlab@ 123456gmail.com

                This article was submitted to Vascular Physiology, a section of the journal Frontiers in Physiology.

                Article
                10.3389/fphys.2014.00396
                4212611
                25400581
                7e26adbc-8313-44c2-9dd3-66edcaa39c59
                Copyright © 2014 Gomolak and Didion.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 August 2014
                : 24 September 2014
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 59, Pages: 10, Words: 8333
                Categories
                Physiology
                Original Research Article

                Anatomy & Physiology
                carotid artery,endothelium,interleukin-6,vascular hypertrophy,mice
                Anatomy & Physiology
                carotid artery, endothelium, interleukin-6, vascular hypertrophy, mice

                Comments

                Comment on this article