50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structure and Physiological Actions of Ghrelin

      review-article
      *
      Scientifica
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ghrelin is a gastric peptide hormone, discovered as being the endogenous ligand of growth hormone secretagogue receptor. Ghrelin is a 28 amino acid peptide presenting a unique n-octanoylation modification on its serine in position 3, catalyzed by ghrelin O-acyl transferase. Ghrelin is mainly produced by a subset of stomach cells and also by the hypothalamus, the pituitary, and other tissues. Transcriptional, translational, and posttranslational processes generate ghrelin and ghrelin-related peptides. Homo- and heterodimers of growth hormone secretagogue receptor, and as yet unidentified receptors, are assumed to mediate the biological effects of acyl ghrelin and desacyl ghrelin, respectively. Ghrelin exerts wide physiological actions throughout the body, including growth hormone secretion, appetite and food intake, gastric secretion and gastrointestinal motility, glucose homeostasis, cardiovascular functions, anti-inflammatory functions, reproductive functions, and bone formation. This review focuses on presenting the current understanding of ghrelin and growth hormone secretagogue receptor biology, as well as the main physiological effects of ghrelin.

          Related collections

          Most cited references347

          • Record: found
          • Abstract: found
          • Article: not found

          A receptor in pituitary and hypothalamus that functions in growth hormone release.

          Small synthetic molecules termed growth hormone secretagogues (GHSs) act on the pituitary gland and the hypothalamus to stimulate and amplify pulsatile growth hormone (GH) release. A heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPC-R) of the pituitary and arcuate ventro-medial and infundibular hypothalamus of swine and humans was cloned and was shown to be the target of the GHSs. On the basis of its pharmacological and molecular characterization, this GPC-R defines a neuroendocrine pathway for the control of pulsatile GH release and supports the notion that the GHSs mimic an undiscovered hormone.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans.

            Ghrelin is a novel growth hormone-releasing peptide, originally identified in the rat stomach as the endogenous ligand for the growth hormone secretagogue-receptor (GHS-R1a). Ghrelin is involved in the regulation of GH release, but it has recently been suggested that ghrelin may have other actions, including effects on appetite, carbohydrate metabolism, heart, kidney, pancreas, gonads, and cell proliferation. The distribution of ghrelin, its functional receptor (type 1a) and the unspliced, non-functional GHS-R type 1b mRNA expression was investigated in various human tissues using classical and real-time reverse transcription and polymerase chain reaction. GHS-R1a was predominantly expressed in the pituitary and at much lower levels in the thyroid gland, pancreas, spleen, myocardium and adrenal gland. In contrast, ghrelin was found in the stomach, other parts of the gut and, indeed, in all the tissues studied (adrenal gland, atrium, breast, buccal mucosa, esophagus, Fallopian tube, fat tissue, gall bladder, human lymphocytes, ileum, kidney, left colon, liver, lung, lymph node, muscle, muscle, myocardium, ovary, pancreas, pituitary, placenta, prostate, right colon, skin, spleen, testis, thyroid, and vein). GHS-R1b expression was also widespread in all tissues studied. The significance of the widespread tissue distribution of ghrelin remains to be determined. These data suggest that ghrelin might have widespread physiological effects via different, partly unidentified, subtypes of the GHS-R in endocrine and non-endocrine tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ghrelin octanoylation mediated by an orphan lipid transferase.

              The peptide hormone ghrelin is the only known protein modified with an O-linked octanoyl side group, which occurs on its third serine residue. This modification is crucial for ghrelin's physiological effects including regulation of feeding, adiposity, and insulin secretion. Despite the crucial role for octanoylation in the physiology of ghrelin, the lipid transferase that mediates this novel modification has remained unknown. Here we report the identification and characterization of human GOAT, the ghrelin O-acyl transferase. GOAT is a conserved orphan membrane-bound O-acyl transferase (MBOAT) that specifically octanoylates serine-3 of the ghrelin peptide. Transcripts for both GOAT and ghrelin occur predominantly in stomach and pancreas. GOAT is conserved across vertebrates, and genetic disruption of the GOAT gene in mice leads to complete absence of acylated ghrelin in circulation. The occurrence of ghrelin and GOAT in stomach and pancreas tissues demonstrates the relevance of GOAT in the acylation of ghrelin and further implicates acylated ghrelin in pancreatic function.
                Bookmark

                Author and article information

                Journal
                Scientifica (Cairo)
                Scientifica (Cairo)
                SCIENTIFICA
                Scientifica
                Hindawi Publishing Corporation
                2090-908X
                2013
                28 November 2013
                : 2013
                : 518909
                Affiliations
                Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 808 Route de Lennik, Bat G/E-CP611, 1070 Brussels, Belgium
                Author notes
                *Christine Delporte: cdelport@ 123456ulb.ac.be

                Academic Editors: E. Hajduch, A. Salehi, and N. Ueno

                Author information
                http://orcid.org/0000-0003-0385-5824
                Article
                10.1155/2013/518909
                3863518
                24381790
                7e5fa70e-9c24-4f4d-bab0-113aa4a8157c
                Copyright © 2013 Christine Delporte.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 October 2013
                : 10 November 2013
                Categories
                Review Article

                Comments

                Comment on this article