3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Silencing miR-202-3p increases MMP-1 and promotes a brain invasive phenotype in metastatic breast cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Brain metastasis (BM) is a major cause of morbidity and mortality in breast cancer (BC) and its molecular mechanism remains poorly understood. Transmigration of metastatic cells through the brain endothelium is an essential step in BM. Metalloproteinase-1 (MMP-1) overexpression plays a key role in promoting trans-endothelial migration by degrading the inter-endothelial junctions and disrupting the endothelial integrity. However, little is known about the molecular mechanisms that induce MMP-1 in metastatic cells granting them a brain invasive phenotype. MiR-202-3p is downregulated in brain metastases compared to primary breast tumors and directly targets MMP-1. Here, we unraveled a critical role of miR-202-3p loss in MMP-1 upregulation promoting transmigration of metastatic cells through the brain endothelium.

          Methods

          A variant of the MDA-MB-231 human BC cell line (MDA-MB-231-BrM2) selected for its propensity to form brain metastases was found to express high levels of MMP-1 and low levels of miR-202-3p compared to the parental cells. Using a gain-and-loss of function approach, we modulated levels of miR-202-3p and examined the resultant effect on MMP-1 expression. Effect of miR-202-3p modulation on integrity of the brain endothelium and the transmigrative ability of BC cells were also examined.

          Results

          Loss of miR-202-3p in breast cancer cells enhanced their transmigration through the brain endothelium by upregulating MMP-1 and disrupting the inter-endothelial junctions (claudin-5, ZO-1 and ß-catenin). Restoring miR-202-3p exerted a metastasis-suppressive effect and preserved the endothelial barrier integrity.

          Conclusions

          Our study identified a critical regulatory role of miR-202-3p in brain metastasis and shed light on miR-202-3p/MMP-1 axis as a novel prognostic and therapeutic target that can be exploited to predict and prevent brain metastasis in breast cancer patients.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genes that mediate breast cancer metastasis to the brain.

            The molecular basis for breast cancer metastasis to the brain is largely unknown. Brain relapse typically occurs years after the removal of a breast tumour, suggesting that disseminated cancer cells must acquire specialized functions to take over this organ. Here we show that breast cancer metastasis to the brain involves mediators of extravasation through non-fenestrated capillaries, complemented by specific enhancers of blood-brain barrier crossing and brain colonization. We isolated cells that preferentially infiltrate the brain from patients with advanced disease. Gene expression analysis of these cells and of clinical samples, coupled with functional analysis, identified the cyclooxygenase COX2 (also known as PTGS2), the epidermal growth factor receptor (EGFR) ligand HBEGF, and the alpha2,6-sialyltransferase ST6GALNAC5 as mediators of cancer cell passage through the blood-brain barrier. EGFR ligands and COX2 were previously linked to breast cancer infiltration of the lungs, but not the bones or liver, suggesting a sharing of these mediators in cerebral and pulmonary metastases. In contrast, ST6GALNAC5 specifically mediates brain metastasis. Normally restricted to the brain, the expression of ST6GALNAC5 in breast cancer cells enhances their adhesion to brain endothelial cells and their passage through the blood-brain barrier. This co-option of a brain sialyltransferase highlights the role of cell-surface glycosylation in organ-specific metastatic interactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Is there new hope for therapeutic matrix metalloproteinase inhibition?

              Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that form a family of 24 members in mammals. Evidence of the pathological roles of MMPs in various diseases, combined with their druggability, has made them attractive therapeutic targets. Initial drug discovery efforts focused on the roles of MMPs in cancer progression, and more than 50 MMP inhibitors have been investigated in clinical trials in various cancers. However, all of these trials failed. Reasons for failure include the lack of inhibitor specificity and insufficient knowledge about the complexity of the disease biology. MMPs are also known to be involved in several inflammatory processes, and there are new therapeutic opportunities for MMP inhibitors to treat such diseases. In this Review, we discuss the recent advances made in understanding the role of MMPs in inflammatory diseases and the therapeutic potential of MMP inhibition in those conditions.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Methodology
                Role: Formal analysisRole: Validation
                Role: Methodology
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                1 October 2020
                2020
                : 15
                : 10
                : e0239292
                Affiliations
                [1 ] Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
                [2 ] Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
                [3 ] Department of Medicines and Healthcare Technologies, CEA, Paris-Saclay University, Gif-sur-Yvette, France
                [4 ] Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
                Hungarian Academy of Sciences, HUNGARY
                Author notes

                Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

                Author information
                http://orcid.org/0000-0001-6672-2944
                http://orcid.org/0000-0002-8039-3013
                Article
                PONE-D-20-14854
                10.1371/journal.pone.0239292
                7529272
                33002044
                7ea0b1a3-4ad0-4044-b11a-08687564b800
                © 2020 Harati et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 May 2020
                : 3 September 2020
                Page count
                Figures: 6, Tables: 0, Pages: 26
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100002655, Terry Fox Foundation;
                Award ID: I1032
                Award Recipient :
                Funded by: the University of Sharjah Competitive Grant
                Award ID: 180111030
                Award Recipient :
                This work was supported by the Terry Fox Foundation’s International Run Program (ref. I1032) and the University of Sharjah Competitive Grant (Grant no. 180111030). RH received these fundings. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Oncology
                Cancers and Neoplasms
                Neurological Tumors
                Brain Metastasis
                Medicine and Health Sciences
                Neurology
                Neurological Tumors
                Brain Metastasis
                Medicine and Health Sciences
                Oncology
                Cancers and Neoplasms
                Breast Tumors
                Breast Cancer
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Transfection
                Research and Analysis Methods
                Molecular Biology Techniques
                Transfection
                Biology and Life Sciences
                Anatomy
                Cardiovascular Anatomy
                Endothelium
                Medicine and Health Sciences
                Anatomy
                Cardiovascular Anatomy
                Endothelium
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Epithelial Cells
                Endothelial Cells
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Epithelium
                Epithelial Cells
                Endothelial Cells
                Medicine and Health Sciences
                Anatomy
                Biological Tissue
                Epithelium
                Epithelial Cells
                Endothelial Cells
                Medicine and Health Sciences
                Oncology
                Cancers and Neoplasms
                Neurological Tumors
                Medicine and Health Sciences
                Neurology
                Neurological Tumors
                Medicine and Health Sciences
                Oncology
                Cancers and Neoplasms
                Metastatic Tumors
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Gene Expression and Vector Techniques
                Protein Expression
                Research and Analysis Methods
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Gene Expression and Vector Techniques
                Protein Expression
                Custom metadata
                All relevant data are within the manuscript and its supporting information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article