Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Glutathione supplementation improves macrophage functions in HIV.

      Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research
      Acetylcysteine, administration & dosage, Cell Growth Processes, drug effects, Cells, Cultured, Colony Count, Microbial, Dietary Supplements, Gene Expression Regulation, Enzymologic, Glutamate-Cysteine Ligase, genetics, metabolism, Glutathione, HIV Infections, immunology, Humans, Immunity, Innate, Immunosuppression, Macrophages, Alveolar, Mycobacterium tuberculosis, Tuberculosis, prevention & control

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we determined the effects of glutathione (GSH)-enhancing agents in restoring the levels of GSH in isolated macrophages from individuals with HIV infection thereby resulting in improved control of Mycobacterium tuberculosis. Our results indicate that treatment with N-acetyl cysteine or a liposomal formulation of glutathione (lGSH) resulted in replenishment of reduced also known as free GSH (rGSH), and correlated with a decrease in the intracellular growth of M. tuberculosis. Finally, we observed differences in the amount of the catalytic subunit of glutamine-cysteine ligase (GCLC), glutathione synthase, and glutathione reductase present in macrophages derived from healthy and HIV-infected individuals. These changes correlated with changes in free radicals as well as rGSH levels. Our results indicate that HIV infection leads to increased production of free radicals and decreased production of GCLC resulting in depletion of rGSH and this may lead, in part, to the loss of innate immune function observed in HIV patients. These findings represent a novel mechanism for control of M. tuberculosis infection, and a possible supplement to current HIV treatments.

          Related collections

          Author and article information

          Comments

          Comment on this article