Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microglial immunophenotype in dementia with Alzheimer’s pathology

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Genetic risk factors for Alzheimer’s disease imply that inflammation plays a causal role in development of the disease. Experimental studies suggest that microglia, as the brain macrophages, have diverse functions, with their main role in health being to survey the brain parenchyma through highly motile processes.

          Methods

          Using the Medical Research Council Cognitive Function and Ageing Studies resources, we have immunophenotyped microglia to investigate their role in dementia with Alzheimer’s pathology. Cerebral cortex obtained at post- mortem from 299 participants was analysed by immunohistochemistry for cluster of differentiation (CD)68 (phagocytosis), human leukocyte antigen (HLA)-DR (antigen-presenting function), ionized calcium-binding adaptor molecule (Iba1) (microglial motility), macrophage scavenger receptor (MSR)-A (plaque-related phagocytosis) and CD64 (immunoglobulin Fcγ receptor I).

          Results

          The presence of dementia was associated positively with CD68 ( P < 0.001), MSR-A ( P = 0.010) and CD64 ( P = 0.007) and negatively with Iba1 ( P < 0.001). Among participants without dementia, the cognitive function according to the Mini-Mental State Examination was associated positively with Iba1 ( P < 0.001) and negatively with CD68 ( P = 0.033), and in participants with dementia and Alzheimer’s pathology, positively with all microglial markers except Iba1. Overall, in participants without dementia, the relationship with Alzheimer’s pathology was negative or not significant, and positive in participants with dementia and Alzheimer’s pathology. Apolipoprotein E ( APOE) ε2 allele was associated with expression of Iba1 ( P = 0.001) and MSR-A ( P < 0.001) and APOE ε4 with CD68, HLA-DR and CD64 ( P < 0.001).

          Conclusions

          Our findings raise the possibility that in dementia with Alzheimer’s pathology, microglia lose motility (Iba-1) necessary to support neurons. Conversely, other microglial proteins (CD68, MSR-A), the role of which is clearance of damaged cellular material, are positively associated with Alzheimer’s pathology and impaired cognitive function. In addition, our data imply that microglia may respond differently to Aβ and tau in participants with and without dementia so that the microglial activity could potentially influence the likelihood of developing dementia, as supported by genetic studies, highlighting the complexity and diversity of microglial responses.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          The Microglial Sensome Revealed by Direct RNA Sequencing

          Microglia, the principal neuroimmune sentinels of the brain, continuously sense changes in their environment and respond to invading pathogens, toxins and cellular debris. Microglia exhibit plasticity and can assume neurotoxic or neuroprotective priming states that determine their responses to danger. We used direct RNA sequencing, without amplification or cDNA synthesis, to determine the quantitative transcriptomes of microglia of healthy adult and aged mice. We validated our findings by fluorescent dual in-situ hybridization, unbiased proteomic analysis and quantitative PCR. We report here that microglia have a distinct transcriptomic signature and express a unique cluster of transcripts encoding proteins for sensing endogenous ligands and microbes that we term the “sensome”. With aging, sensome transcripts for endogenous ligand recognition are downregulated, whereas those involved in microbe recognition and host defense are upregulated. In addition, aging is associated with an overall increase in expression of microglial genes involved in neuroprotection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fcgamma receptors: old friends and new family members.

            Although cellular receptors for immunoglobulins were first identified nearly 40 years ago, their central role in the immune response was discovered only in the last decade. They are key players in both the afferent and efferent phase of an immune response, setting thresholds for B cell activation, regulating the maturation of dendritic cells, and coupling the exquisite specificity of the antibody response to innate effector pathways, such as phagocytosis, antibody-dependent cellular cytotoxicity, and the recruitment and activation of inflammatory cells. Moreover, because of their general presence as receptor pairs consisting of activating and inhibitory molecules on the same cell, they have become a paradigm for studying the balance of positive and negative signals that ultimately determine the outcome of an immune response. This review will summarize recent results in Fc-receptor biology with an emphasis on data obtained in in vivo model systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease.

              Previous studies have suggested that the use of nonsteroidal antiinflammatory drugs (NSAIDs) may help to prevent Alzheimer's disease. The results, however, are inconsistent. We studied the association between the use of NSAIDs and Alzheimer's disease and vascular dementia in a prospective, population-based cohort study of 6989 subjects 55 years of age or older who were free of dementia at base line, in 1991. To detect new cases of dementia, follow-up screening was performed in 1993 and 1994 and again in 1997 through 1999. The risk of Alzheimer's disease was estimated in relation to the use of NSAIDs as documented in pharmacy records. We defined four mutually exclusive categories of use: nonuse, short-term use (1 month or less of cumulative use), intermediate-term use (more than 1 but less than 24 months of cumulative use), and long-term use (24 months or more of cumulative use). Adjustments were made by Cox regression analysis for age, sex, education, smoking status, and the use or nonuse of salicylates, histamine Hz-receptor antagonists, antihypertensive agents, and hypoglycemic agents. During an average follow-up period of 6.8 years, dementia developed in 394 subjects, of whom 293 had Alzheimer's disease, 56 vascular dementia, and 45 other types of dementia. The relative risk of Alzheimer's disease was 0.95 (95 percent confidence interval, 0.70 to 1.29) in subjects with short-term use of NSAIDs, 0.83 (95 percent confidence interval, 0.62 to 1.11) in those with intermediate-term use, and 0.20 (95 percent confidence interval, 0.05 to 0.83) in those with long-term use. The risk did not vary according to age. The use of NSAIDs was not associated with a reduction in the risk of vascular dementia. The long-term use of NSAIDs may protect against Alzheimer's disease but not against vascular dementia.
                Bookmark

                Author and article information

                Contributors
                +44 (0) 2381 206 107 , d.boche@soton.ac.uk
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                2 June 2016
                2 June 2016
                2016
                : 13
                : 135
                Affiliations
                [ ]Institute of Public Health, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN UK
                [ ]Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ UK
                [ ]Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD UK
                [ ]MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, CB2 0SR UK
                [ ]Sheffield Institute for Translational Neuroscience, Sheffield University, Sheffield, S10 2HQ UK
                [ ]Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, Southampton, SO16 6YD UK
                Article
                601
                10.1186/s12974-016-0601-z
                4890505
                27256292
                7f7965fa-2fcd-4988-9d29-b8ee4a0a4f2e
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 March 2016
                : 26 May 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000265, Medical Research Council;
                Award ID: G0900582
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Neurosciences
                microglia,dementia,alzheimer’s disease,apolipoprotein e,neuropathology
                Neurosciences
                microglia, dementia, alzheimer’s disease, apolipoprotein e, neuropathology

                Comments

                Comment on this article