Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hydraulic properties of Douglas-fir (Pseudotsuga menziesii) branches and branch halves with reference to compression wood.

      Tree Physiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) branch segments were used to test the hypothesis that compression wood reduces xylem transport efficiency. Whole 3-year-old segments were first measured for specific conductivity (k(s), m(2) s(-1) MPa(-1)), then split lengthwise into upper and lower halves, the latter containing all or most of the compression wood in the segment. Halves were then remeasured for k(s) using a new technique that prevents leakage of permeating fluid during measurements. Lower branch halves had significantly lower k(s) than upper halves (6.4 +/- 0.3 versus 9.3 +/- 0.3 m(2) s(-1) MPa(-1) x 10(-4), respectively; n = 36), and despite their larger size, significantly lower hydraulic conductivity (k(h), m(4) s(-1) MPa(-1)) than upper halves. Lower branch halves had higher specific gravity (0.51 +/- 0.01 versus 0.45 +/- 0.01; n = 36), lower water content (123 +/- 2% versus 155 +/- 3%; n = 36), and larger proportions of volume occupied by both cell wall and air than upper halves. Lower halves had more tracheids per annual ring than upper halves (73 +/- 3 versus 63 +/- 2 per radial transect, respectively; n = 36), but tracheids were shorter and had narrower lumens than those of upper branch halves. Differences in hydraulic properties between upper and lower halves suggest that compression wood does reduce xylem transport efficiency. In contrast, the amount of compression wood in each sample did not explain any variation in whole unsplit sample hydraulic properties.

          Related collections

          Author and article information

          Journal
          12651412
          10.1093/treephys/18.11.777

          Comments

          Comment on this article