9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Free fatty acid receptors 2 and 3 (FFAR2/FFA2/GPR43 and FFAR3/FFA3/GPR41) are mammalian receptors for gut microbiota–derived short-chain fatty acids (SCFAs). These receptors are promising drug targets for obesity, colitis, colon cancer, asthma, and arthritis. Here, we demonstrate that FFAR2 and FFAR3 interact to form a heteromer in primary human monocytes and macrophages via proximity ligation assay, and during heterologous expression in HEK293 cells via bimolecular fluorescence complementation and fluorescence resonance energy transfer. The FFAR2-FFAR3 heteromer displayed enhanced cytosolic Ca 2+ signaling (1.5-fold increase relative to homomeric FFAR2) and β-arrestin-2 recruitment (30-fold increase relative to homomeric FFAR3). The enhanced heteromer signaling was attenuated by FFAR2 antagonism (CATPB), G αq inhibition (YM254890), or G αi inhibition (pertussis toxin). Unlike homomeric FFAR2/3, the heteromer lacked the ability to inhibit cAMP production but gained the ability to induce p38 phosphorylation in HEK293 and inflammatory monocytes via a CATPB- and YM254890-sensitive mechanism. Our data, taken together, reveal that FFAR2 and FFAR3 may interact to form a receptor heteromer with signaling that is distinct from the parent homomers—a novel pathway for drug targeting.—Ang, Z., Xiong, D., Wu, M., Ding, J. L. FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation.

          Short chain fatty acids (SCFAs), including acetate, propionate, and butyrate, are produced at high concentration by bacteria in the gut and subsequently released in the bloodstream. Basal acetate concentrations in the blood (about 100 microm) can further increase to millimolar concentrations following alcohol intake. It was known previously that SCFAs can activate leukocytes, particularly neutrophils. In the present work, we have identified two previously orphan G protein-coupled receptors, GPR41 and GPR43, as receptors for SCFAs. Propionate was the most potent agonist for both GPR41 and GPR43. Acetate was more selective for GPR43, whereas butyrate and isobutyrate were more active on GPR41. The two receptors were coupled to inositol 1,4,5-trisphosphate formation, intracellular Ca2+ release, ERK1/2 activation, and inhibition of cAMP accumulation. They exhibited, however, a differential coupling to G proteins; GPR41 coupled exclusively though the Pertussis toxin-sensitive Gi/o family, whereas GPR43 displayed a dual coupling through Gi/o and Pertussis toxin-insensitive Gq protein families. The broad expression profile of GPR41 in a number of tissues does not allow us to infer clear hypotheses regarding its biological functions. In contrast, the highly selective expression of GPR43 in leukocytes, particularly polymorphonuclear cells, suggests a role in the recruitment of these cell populations toward sites of bacterial infection. The pharmacology of GPR43 matches indeed the effects of SCFAs on neutrophils, in terms of intracellular Ca2+ release and chemotaxis. Such a neutrophil-specific SCFA receptor is potentially involved in the development of a variety of diseases characterized by either excessive or inefficient neutrophil recruitment and activation, such as inflammatory bowel diseases or alcoholism-associated immune depression. GPR43 might therefore constitute a target allowing us to modulate immune responses in these pathological situations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PRESTO-TANGO: an open-source resource for interrogation of the druggable human GPCR-ome

            G protein-coupled receptors (GPCRs) are essential mediators of cellular signaling and important targets of drug action. Of the approximately 350 non-olfactory human GPCRs, more than 100 are still considered “orphans” as their endogenous ligand(s) remain unknown. Here, we describe a unique open-source resource that provides the capacity to interrogate the druggable human GPCR-ome via a G protein-independent β-arrestin recruitment assay. We validate this unique platform at more than 120 non-orphan human GPCR targets, demonstrate its utility for discovering new ligands for orphan human GPCRs, and describe a method (PRESTO-TANGO; Parallel Receptor-ome Expression and Screening via Transcriptional Output - TANGO) for the simultaneous and parallel interrogation of the entire human GPCR-ome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The genetic design of signaling cascades to record receptor activation.

              We have developed an experimental strategy to monitor protein interactions in a cell with a high degree of selectivity and sensitivity. A transcription factor is tethered to a membrane-bound receptor with a linker that contains a cleavage site for a specific protease. Activation of the receptor recruits a signaling protein fused to the protease that then cleaves and releases the transcription factor to activate reporter genes in the nucleus. This strategy converts a transient interaction into a stable and amplifiable reporter gene signal to record the activation of a receptor without interference from endogenous signaling pathways. We have developed this assay for three classes of receptors: G protein-coupled receptors, receptor tyrosine kinases, and steroid hormone receptors. Finally, we use the assay to identify a ligand for the orphan receptor GPR1, suggesting a role for this receptor in the regulation of inflammation.
                Bookmark

                Author and article information

                Journal
                FASEB J
                FASEB J
                fasebj
                fasebj
                FASEB
                The FASEB Journal
                Federation of American Societies for Experimental Biology (Bethesda, MD, USA )
                0892-6638
                1530-6860
                January 2018
                07 September 2017
                07 September 2017
                : 32
                : 1
                : 289-303
                Affiliations
                [* ]Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore;
                []Centre for Bioimaging Sciences, National University of Singapore, Singapore; and
                []Mechanobiology Institute, National University of Singapore, Singapore
                Author notes
                [1 ]Correspondence: Department of Biological Science, National University of Singapore, 14 Science Dr. 4, Singapore 117543. E-mail: dbsdjl@ 123456nus.edu.sg
                Article
                FJ_201700252RR
                10.1096/fj.201700252RR
                5731126
                28883043
                7fa9c1d3-1742-412b-a783-72e4f3b9c022
                © The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) ( http://creativecommons.org/licenses/by-nc/4.0/) which permits noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 March 2017
                : 28 August 2017
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 58, Pages: 15
                Categories
                Research
                Custom metadata
                v1

                Molecular biology
                gpcr heteromer,ffa2/gpr43,ffa3/gpr41
                Molecular biology
                gpcr heteromer, ffa2/gpr43, ffa3/gpr41

                Comments

                Comment on this article