2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Preparation of Graphene Oxide-Based Supramolecular Hybrid Nanohydrogel Through Host-Guest Interaction and Its Application in Drug Delivery.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Graphene oxide (GO) has attracted a wide attention for its excellent mechanical, thermal properties and unique two-dimensional structure. In this work, A new GO-based supramolecular hybrid nanohydrogel was prepared, in which GO as the cross-links was incorporated into the above hydrogel through non-covalent functionalization to enhance the mechanical properties and control morphology. A 1-pyrenebutyric acid (Py) modified low-molecular weight (MW) mPEG was firstly synthesized via a simple esterification reaction. Then, low-MW mPEG functionalized GO (GO-Py-PEG) was obtained due to the strong π-π stacking interaction between Py and GO. The combination of the host-guest interaction between mPEG and -CD and addition of GO lastly leaded to the formation of supramolecular hybrid nanohydrogel. Various techniques including UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM) were used to thoroughly characterize the hybrid hydrogel. More interestingly, the results of rheology studies and scanning electron microscopy (SEM) revealed that the mechanical strength and morphology of hybrid hydrogel was improved by the incorporation of GO. Meanwhile, doxorubicin hydrochloride (DOX) as a model drug was loaded into hybrid hydrogel, and the in vitro released behavior was studied under different pH values. The results showed that the formed hybrid hydrogel could release DOX over 50 h in a sustained manner. In addition, in vitro and in vivo experiments, GO-Py-PEG-α-CD@DOX hydrogel (hydrogel@DOX) dramatically shows the inhibition of tumor cell proliferation and tumor growth. At the same time, HE staining results show hydrogel@DOX can significantly reduce the side effects of DOX. We believe that the development of such hybrid hydrogels will provide important potential for medical applications.

          Related collections

          Author and article information

          Journal
          J Biomed Nanotechnol
          Journal of biomedical nanotechnology
          American Scientific Publishers
          1550-7033
          1550-7033
          Dec 01 2018
          : 14
          : 12
          Article
          10.1166/jbn.2018.2648
          30305213
          7fd9ff00-36b1-4a5d-9557-0ef80d670871
          History

          Comments

          Comment on this article