1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emergence of new phylogenetic lineage of Influenza D virus with broad antigenicity in California, United States

      letter

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Influenza D virus (IDV), with bovines as a primary host, circulates widely in cattle populations across North America and Eurasia. Here we report the identification of a novel IDV group with broad antigenicity in U.S. bovine herds, which is genetically different from previously known lineages of IDV.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          A metagenomics and case-control study to identify viruses associated with bovine respiratory disease.

          Bovine respiratory disease (BRD) is a common health problem for both dairy and beef cattle, resulting in significant economic loses. In order to identify viruses associated with BRD, we used a metagenomics approach to enrich and sequence viral nucleic acids in the nasal swabs of 50 young dairy cattle with symptoms of BRD. Following deep sequencing, de novo assembly, and translated protein sequence similarity searches, numerous known and previously uncharacterized viruses were identified. Bovine adenovirus 3, bovine adeno-associated virus, bovine influenza D virus, bovine parvovirus 2, bovine herpesvirus 6, bovine rhinitis A virus, and multiple genotypes of bovine rhinitis B virus were identified. The genomes of a previously uncharacterized astrovirus and picobirnaviruses were also partially or fully sequenced. Using real-time PCR, the rates of detection of the eight viruses that generated the most reads were compared for the nasal secretions of 50 animals with BRD versus 50 location-matched healthy control animals. Viruses were detected in 68% of BRD-affected animals versus 16% of healthy control animals. Thirty-eight percent of sick animals versus 8% of controls were infected with multiple respiratory viruses. Significantly associated with BRD were bovine adenovirus 3 (P < 0.0001), bovine rhinitis A virus (P = 0.005), and the recently described bovine influenza D virus (P = 0.006), which were detected either alone or in combination in 62% of animals with BRD. A metagenomics and real-time PCR detection approach in carefully matched cases and controls can provide a rapid means to identify viruses associated with a complex disease, paving the way for further confirmatory tests and ultimately to effective intervention strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metagenomic characterization of the virome associated with bovine respiratory disease in feedlot cattle identified novel viruses and suggests an etiologic role for influenza D virus.

            Bovine respiratory disease (BRD) is the most costly disease affecting the cattle industry. The pathogenesis of BRD is complex and includes contributions from microbial pathogens as well as host, environmental and animal management factors. In this study, we utilized viral metagenomic sequencing to explore the virome of nasal swab samples obtained from feedlot cattle with acute BRD and asymptomatic pen-mates at six and four feedlots in Mexico and the USA, respectively, in April-October 2015. Twenty-one viruses were detected, with bovine rhinitis A (52.7 %) and B (23.7 %) virus, and bovine coronavirus (24.7 %) being the most commonly identified. The emerging influenza D virus (IDV) tended to be significantly associated (P=0.134; odds ratio=2.94) with disease, whereas viruses commonly associated with BRD such as bovine viral diarrhea virus, bovine herpesvirus 1, bovine respiratory syncytial virus and bovine parainfluenza 3 virus were detected less frequently. The detection of IDV was further confirmed using a real-time PCR assay. Nasal swabs from symptomatic animals had significantly more IDV RNA than those collected from healthy animals (P=0.04). In addition to known viruses, new genotypes of bovine rhinitis B virus and enterovirus E were identified and a newly proposed species of bocaparvovirus, Ungulate bocaparvovirus 6, was characterized. Ungulate tetraparvovirus 1 was also detected for the first time in North America to our knowledge. These results illustrate the complexity of the virome associated with BRD and highlight the need for further research into the contribution of other viruses to BRD pathogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathogenesis of Influenza D Virus in Cattle.

              Cattle have been proposed as the natural reservoir of a novel member of the virus family Orthomyxoviridae, which has been tentatively classified as influenza D virus (IDV). Although isolated from sick animals, it is unclear whether IDV causes any clinical disease in cattle. To address this aspect of Koch's postulates, three dairy calves (treatment animals) held in individual pens were inoculated intranasally with IDV strain D/bovine/Mississippi/C00046N/2014. At 1 day postinoculation, a seronegative calf (contact animal) was added to each of the treatment animal pens. The cattle in both treatment and contact groups seroconverted, and virus was detected in their respiratory tracts. Histologically, there was a significant increase in neutrophil tracking in tracheal epithelia of the treatment calves compared to control animals. While infected and contact animals demonstrated various symptoms of respiratory tract infection, they were mild, and the calves in the treatment group did not differ from the controls in terms of heart rate, respiratory rate, or rectal temperature. To mimic zoonotic transmission, two ferrets were exposed to a plastic toy fomite soaked with infected nasal discharge from the treatment calves. These ferrets did not shed the virus or seroconvert. In summary, this study demonstrates that IDV causes a mild respiratory disease upon experimental infection of cattle and can be transmitted effectively among cattle by in-pen contact, but not from cattle to ferrets through fomite exposure. These findings support the hypothesis that cattle are a natural reservoir for the virus.
                Bookmark

                Author and article information

                Journal
                Emerg Microbes Infect
                Emerg Microbes Infect
                Emerging Microbes & Infections
                Taylor & Francis
                2222-1751
                9 April 2021
                2021
                : 10
                : 1
                : 739-742
                Affiliations
                [a ]University of Kentucky , Lexington, KY, USA
                [b ]Cambridge Technologies , Worthington, MN, USA;
                [c ]Columbia University , New York, NY, USA
                Author notes
                [CONTACT ] Feng Li feng.li@ 123456uky.edu University of Kentucky , 325 Gluck Equine Research Center, 1400 Nicholasville Rd., Lexington, KY40546-0099, USA
                [*]

                These first authors contributed equally to this article. Author order was determined alphabetically.

                Supplemental data for this article can be accessed online at https://doi.org/10.1080/22221751.2021.1910078

                Author information
                https://orcid.org/0000-0003-1466-1339
                Article
                1910078
                10.1080/22221751.2021.1910078
                8043534
                33771071
                7fe1662d-8872-4b84-b3e0-7d77b4d9c8d2
                © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 11, Pages: 4
                Categories
                Letter
                Letter

                influenza d,genetic lineage,antigenicity,hemagglutinin-esterase fusion,variation

                Comments

                Comment on this article