88
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The interplay of histone modifications – writers that read

      review-article
      1 , 1 , * , 1
      EMBO Reports
      John Wiley & Sons, Ltd
      chromatin, histone modifications, Polycomb, Trithorax

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone-modifying proteins, and discuss how this may be important in defining gene expression states during development.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          A chromatin landmark and transcription initiation at most promoters in human cells.

          We describe the results of a genome-wide analysis of human cells that suggests that most protein-coding genes, including most genes thought to be transcriptionally inactive, experience transcription initiation. We found that nucleosomes with H3K4me3 and H3K9,14Ac modifications, together with RNA polymerase II, occupy the promoters of most protein-coding genes in human embryonic stem cells. Only a subset of these genes produce detectable full-length transcripts and are occupied by nucleosomes with H3K36me3 modifications, a hallmark of elongation. The other genes experience transcription initiation but show no evidence of elongation, suggesting that they are predominantly regulated at postinitiation steps. Genes encoding most developmental regulators fall into this group. Our results also identify a class of genes that are excluded from experiencing transcription initiation, at which mechanisms that prevent initiation must predominate. These observations extend to differentiated cells, suggesting that transcription initiation at most genes is a general phenomenon in human cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding the language of Lys36 methylation at histone H3.

            Histone side chains are post-translationally modified at multiple sites, including at Lys36 on histone H3 (H3K36). Several enzymes from yeast and humans, including the methyltransferases SET domain-containing 2 (Set2) and nuclear receptor SET domain-containing 1 (NSD1), respectively, alter the methylation status of H3K36, and significant progress has been made in understanding how they affect chromatin structure and function. Although H3K36 methylation is most commonly associated with the transcription of active euchromatin, it has also been implicated in diverse processes, including alternative splicing, dosage compensation and transcriptional repression, as well as DNA repair and recombination. Disrupted placement of methylated H3K36 within the chromatin landscape can lead to a range of human diseases, underscoring the importance of this modification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distinct epigenomic landscapes of pluripotent and lineage-committed human cells.

              Human embryonic stem cells (hESCs) share an identical genome with lineage-committed cells, yet possess the remarkable properties of self-renewal and pluripotency. The diverse cellular properties in different cells have been attributed to their distinct epigenomes, but how much epigenomes differ remains unclear. Here, we report that epigenomic landscapes in hESCs and lineage-committed cells are drastically different. By comparing the chromatin-modification profiles and DNA methylomes in hESCs and primary fibroblasts, we find that nearly one-third of the genome differs in chromatin structure. Most changes arise from dramatic redistributions of repressive H3K9me3 and H3K27me3 marks, which form blocks that significantly expand in fibroblasts. A large number of potential regulatory sequences also exhibit a high degree of dynamics in chromatin modifications and DNA methylation. Additionally, we observe novel, context-dependent relationships between DNA methylation and chromatin modifications. Our results provide new insights into epigenetic mechanisms underlying properties of pluripotency and cell fate commitment.
                Bookmark

                Author and article information

                Journal
                EMBO Rep
                EMBO Rep
                embr
                EMBO Reports
                John Wiley & Sons, Ltd (Chichester, UK )
                1469-221X
                1469-3178
                November 2015
                16 October 2015
                : 16
                : 11
                : 1467-1481
                Affiliations
                [1 ]Developmental Epigenetics, Department of Biochemistry, University of Oxford Oxford, UK
                Author notes
                *Corresponding author. Tel: +44 1865 613230; E-mail: sarah.cooper@ 123456bioch.ox.ac.uk
                [†]

                These authors contributed equally to this work

                Article
                10.15252/embr.201540945
                4641500
                26474904
                7fe4f774-8997-47a9-a593-2eead4be892b
                © 2015 The Authors. Published under the terms of the CC BY 4.0 license

                This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 June 2015
                : 04 September 2015
                : 16 September 2015
                Categories
                Reviews

                Molecular biology
                chromatin,histone modifications,polycomb,trithorax
                Molecular biology
                chromatin, histone modifications, polycomb, trithorax

                Comments

                Comment on this article