3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Strain-Level Diversity Impacts Cheese Rind Microbiome Assembly and Function

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our work demonstrated that the specific microbial strains used to construct a microbiome could impact the species composition, perturbation responses, and functional outputs of that system. These findings suggest that 16S rRNA gene taxonomic profiles alone may have limited potential to predict the dynamics of microbial communities because they usually do not capture strain-level diversity. Observations from our synthetic communities also suggest that strain-level diversity has the potential to drive variability in the aesthetics and quality of surface-ripened cheeses.

          ABSTRACT

          Diversification can generate genomic and phenotypic strain-level diversity within microbial species. This microdiversity is widely recognized in populations, but the community-level consequences of microbial strain-level diversity are poorly characterized. Using the cheese rind model system, we tested whether strain diversity across microbiomes from distinct geographic regions impacts assembly dynamics and functional outputs. We first isolated the same three bacterial species ( Staphylococcus equorum, Brevibacterium auranticum, and Brachybacterium alimentarium) from nine cheeses produced in different regions of the United States and Europe to construct nine synthetic microbial communities consisting of distinct strains of the same three bacterial species. Comparative genomics identified distinct phylogenetic clusters and significant variation in genome content across the nine synthetic communities. When we assembled each synthetic community with initially identical compositions, community structure diverged over time, resulting in communities with different dominant taxa. The taxonomically identical communities showed differing responses to abiotic (high salt) and biotic (the fungus Penicillium) perturbations, with some communities showing no response and others substantially shifting in composition. Functional differences were also observed across the nine communities, with significant variation in pigment production (light yellow to orange) and in composition of volatile organic compound profiles emitted from the rinds (nutty to sulfury).

          IMPORTANCE Our work demonstrated that the specific microbial strains used to construct a microbiome could impact the species composition, perturbation responses, and functional outputs of that system. These findings suggest that 16S rRNA gene taxonomic profiles alone may have limited potential to predict the dynamics of microbial communities because they usually do not capture strain-level diversity. Observations from our synthetic communities also suggest that strain-level diversity has the potential to drive variability in the aesthetics and quality of surface-ripened cheeses.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Stochastic Community Assembly: Does It Matter in Microbial Ecology?

          Understanding the mechanisms controlling community diversity, functions, succession, and biogeography is a central, but poorly understood, topic in ecology, particularly in microbial ecology. Although stochastic processes are believed to play nonnegligible roles in shaping community structure, their importance relative to deterministic processes is hotly debated. The importance of ecological stochasticity in shaping microbial community structure is far less appreciated. Some of the main reasons for such heavy debates are the difficulty in defining stochasticity and the diverse methods used for delineating stochasticity. Here, we provide a critical review and synthesis of data from the most recent studies on stochastic community assembly in microbial ecology. We then describe both stochastic and deterministic components embedded in various ecological processes, including selection, dispersal, diversification, and drift. We also describe different approaches for inferring stochasticity from observational diversity patterns and highlight experimental approaches for delineating ecological stochasticity in microbial communities. In addition, we highlight research challenges, gaps, and future directions for microbial community assembly research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Patterns and processes of microbial community assembly.

            Recent research has expanded our understanding of microbial community assembly. However, the field of community ecology is inaccessible to many microbial ecologists because of inconsistent and often confusing terminology as well as unnecessarily polarizing debates. Thus, we review recent literature on microbial community assembly, using the framework of Vellend (Q. Rev. Biol. 85:183-206, 2010) in an effort to synthesize and unify these contributions. We begin by discussing patterns in microbial biogeography and then describe four basic processes (diversification, dispersal, selection, and drift) that contribute to community assembly. We also discuss different combinations of these processes and where and when they may be most important for shaping microbial communities. The spatial and temporal scales of microbial community assembly are also discussed in relation to assembly processes. Throughout this review paper, we highlight differences between microbes and macroorganisms and generate hypotheses describing how these differences may be important for community assembly. We end by discussing the implications of microbial assembly processes for ecosystem function and biodiversity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections

              Pseudomonas aeruginosa populations undergo a characteristic evolutionary adaptation during chronic infection of the cystic fibrosis (CF) lung, including reduced production of virulence factors, transition to a biofilm-associated lifestyle, and evolution of high-level antibiotic resistance. Populations of P. aeruginosa in chronic CF lung infections typically exhibit high phenotypic diversity, including for clinically important traits such as antibiotic resistance and toxin production, and this diversity is dynamic over time, making accurate diagnosis and treatment challenging. Population genomics studies reveal extensive genetic diversity within patients, including for transmissible strains the coexistence of highly divergent lineages acquired by patient-to-patient transmission. The inherent spatial structure and spatial heterogeneity of selection in the CF lung appears to play a key role in driving P. aeruginosa diversification.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mSystems
                mSystems
                msys
                msys
                mSystems
                mSystems
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2379-5077
                16 June 2020
                May-Jun 2020
                : 5
                : 3
                : e00149-20
                Affiliations
                [a ]Tufts University, Department of Biology, Medford, Massachusetts, USA
                [b ]Tufts University, Department of Chemistry, Medford, Massachusetts, USA
                Teagasc Food Research Centre
                Author notes
                Address correspondence to Benjamin E. Wolfe, benjamin.wolfe@ 123456tufts.edu .

                Citation Niccum BA, Kastman EK, Kfoury N, Robbat A, Jr, Wolfe BE. 2020. Strain-level diversity impacts cheese rind microbiome assembly and function. mSystems 5:e00149-20. https://doi.org/10.1128/mSystems.00149-20.

                Author information
                https://orcid.org/0000-0002-0194-9336
                Article
                mSystems00149-20
                10.1128/mSystems.00149-20
                7300356
                32546667
                8024a818-3c29-41a0-b8dc-2c48491ad6a1
                Copyright © 2020 Niccum et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 19 February 2020
                : 28 May 2020
                Page count
                supplementary-material: 7, Figures: 5, Tables: 0, Equations: 0, References: 87, Pages: 18, Words: 11012
                Funding
                Funded by: National Science Foundation (NSF), https://doi.org/10.13039/100000001;
                Award ID: 1715553
                Award Recipient : Award Recipient : Award Recipient :
                Categories
                Research Article
                Ecological and Evolutionary Science
                Custom metadata
                May/June 2020

                cheese,genomics,microbial communities,microbiome assembly,strain diversity

                Comments

                Comment on this article