44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The quantum spin Hall effect and topological insulators

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In topological insulators, spin-orbit coupling and time-reversal symmetry combine to form a novel state of matter predicted to have exotic physical properties.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: not found

          Experimental realization of a three-dimensional topological insulator, Bi2Te3.

          Three-dimensional topological insulators are a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. By investigating the surface state of Bi2Te3 with angle-resolved photoemission spectroscopy, we demonstrate that the surface state consists of a single nondegenerate Dirac cone. Furthermore, with appropriate hole doping, the Fermi level can be tuned to intersect only the surface states, indicating a full energy gap for the bulk states. Our results establish that Bi2Te3 is a simple model system for the three-dimensional topological insulator with a single Dirac cone on the surface. The large bulk gap of Bi2Te3 also points to promising potential for high-temperature spintronics applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A topological Dirac insulator in a quantum spin Hall phase : Experimental observation of first strong topological insulator

            When electrons are subject to a large external magnetic field, the conventional charge quantum Hall effect \cite{Klitzing,Tsui} dictates that an electronic excitation gap is generated in the sample bulk, but metallic conduction is permitted at the boundary. Recent theoretical models suggest that certain bulk insulators with large spin-orbit interactions may also naturally support conducting topological boundary states in the extreme quantum limit, which opens up the possibility for studying unusual quantum Hall-like phenomena in zero external magnetic field. Bulk Bi\(_{1-x}\)Sb\(_x\) single crystals are expected to be prime candidates for one such unusual Hall phase of matter known as the topological insulator. The hallmark of a topological insulator is the existence of metallic surface states that are higher dimensional analogues of the edge states that characterize a spin Hall insulator. In addition to its interesting boundary states, the bulk of Bi\(_{1-x}\)Sb\(_x\) is predicted to exhibit three-dimensional Dirac particles, another topic of heightened current interest. Here, using incident-photon-energy-modulated (IPEM-ARPES), we report the first direct observation of massive Dirac particles in the bulk of Bi\(_{0.9}\)Sb\(_{0.1}\), locate the Kramers' points at the sample's boundary and provide a comprehensive mapping of the topological Dirac insulator's gapless surface modes. These findings taken together suggest that the observed surface state on the boundary of the bulk insulator is a realization of the much sought exotic "topological metal". They also suggest that this material has potential application in developing next-generation quantum computing devices.
              Bookmark

              Author and article information

              Journal
              2010-01-11
              Article
              10.1063/1.3293411
              1001.1602
              8035df43-6277-4e77-a27a-f9f21a20468a

              http://arxiv.org/licenses/nonexclusive-distrib/1.0/

              History
              Custom metadata
              Physics Today, Jan. 2010, Vol. 63, Pg. 33-38
              7 pages, 5 figures, an introduction of the quantum spin Hall effect and topological insulators. For a video introduction of topological insulators, see http://www.youtube.com/watch?v=Qg8Yu-Ju3Vw
              cond-mat.mtrl-sci cond-mat.mes-hall

              Condensed matter,Nanophysics
              Condensed matter, Nanophysics

              Comments

              Comment on this article

              scite_

              Cited by152

              Most referenced authors49