8
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Sex and Gender in Neurodegenerative Diseases

      Submit here before September 30, 2024

      About Neurodegenerative Diseases: 3.0 Impact Factor I 4.3 CiteScore I 0.695 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Contralesional Thalamic Surface Atrophy and Functional Disconnection 3 Months after Ischemic Stroke

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Remote structural and functional changes have been previously described after stroke and may have an impact on clinical outcome. We aimed to use multimodal MRI to investigate contralesional subcortical structural and functional changes 3 months after anterior circulation ischemic stroke. Methods: Fifteen patients with acute ischemic stroke had multimodal MRI imaging (including high resolution structural T1-MPRAGE and resting state fMRI) within 1 week of onset and at 1 and 3 months. Seven healthy controls of similar age group were also imaged at a single time point. Contralesional subcortical structural volume was assessed using an automated segmentation algorithm in FMRIB's Integrated Registration and Segmentation Tool (FIRST). Functional connectivity changes were assessed using the intrinsic connectivity contrast (ICC), which was calculated using the functional connectivity toolbox for correlated and anticorrelated networks (Conn). Results: Contralesional thalamic volume in the stroke patients was significantly reduced at 3 months compared to baseline (median change -2.1%, interquartile range [IQR] -3.4-0.4, p = 0.047), with the predominant areas demonstrating atrophy geometrically appearing to be the superior and inferior surface. The difference in volume between the contralesional thalamus at baseline (mean 6.41 ml, standard deviation [SD] 0.6 ml) and the mean volume of the 2 thalami in controls (mean 7.22 ml, SD 1.1 ml) was not statistically significant. The degree of longitudinal thalamic atrophy in patients was correlated with baseline stroke severity with more severe strokes being associated with a greater degree of atrophy (Spearman's rho -0.54, p = 0.037). There was no significant difference between baseline contralesional thalamic ICC in patients and control thalamic ICC. However, in patients, there was a significant linear reduction in the mean ICC of the contralesional thalamus over the imaging time points (p = 0.041), indicating reduced connectivity to the remainder of the brain. Conclusions: These findings highlight the importance of remote brain areas, such as the contralesional thalamus, in stroke recovery. Similar methods have the potential to be used in the prediction of stroke outcome or as imaging biomarkers of stroke recovery.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Central Nervous System Function in Youth With Type 1 Diabetes 12 Years After Disease Onset

          OBJECTIVE—In this study, we used neurocognitive assessment and neuroimaging to examine brain function in youth with type 1 diabetes studied prospectively from diagnosis. RESEARCH DESIGN AND METHODS—We studied type 1 diabetic (n = 106) and control subjects (n = 75) with no significant group difference on IQ at baseline 12 years previously by using the Wechsler Abbreviated Scale of General Intelligence, magnetic resonance spectroscopy and imaging, and metabolic control data from diagnosis. RESULTS—Type 1 diabetic subjects had lower verbal and full scale IQs than control subjects (both P < 0.05). Type 1 diabetic subjects had lower N-acetylaspartate in frontal lobes and basal ganglia and higher myoinositol and choline in frontal and temporal lobes and basal ganglia than control subjects (all P < 0.05). Type 1 diabetic subjects, relative to control subjects, had decreased gray matter in bilateral thalami and right parahippocampal gyrus and insular cortex. White matter was decreased in bilateral parahippocampi, left temporal lobe, and middle frontal area (all P < 0.0005 uncorrected). T2 in type 1 diabetic subjects was increased in left superior temporal gyrus and decreased in bilateral lentiform nuclei, caudate nuclei and thalami, and right insular area (all P < 0.0005 uncorrected). Early-onset disease predicted lower performance IQ, and hypoglycemia was associated with lower verbal IQ and volume reduction in thalamus; poor metabolic control predicted elevated myoinositol and decreased T2 in thalamus; and older age predicted volume loss and T2 change in basal ganglia. CONCLUSIONS—This study documents brain effects 12 years after diagnosis in a type 1 diabetic sample whose IQ at diagnosis matched that of control subjects. Findings suggest several neuropathological processes including gliosis, demyelination, and altered osmolarity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A whole-brain voxel based measure of intrinsic connectivity contrast reveals local changes in tissue connectivity with anesthetic without a priori assumptions on thresholds or regions of interest.

            The analysis of spontaneous fluctuations of functional magnetic resonance imaging (fMRI) signals has recently gained attention as a powerful tool for investigating brain circuits in a non-invasive manner. Correlation-based connectivity analysis investigates the correlations of spontaneous fluctuations of the fMRI signal either between a single seed region of interest (ROI) and the rest of the brain or between multiple ROIs. To do this, a priori knowledge is required for defining the ROI(s) and without such knowledge functional connectivity fMRI cannot be used as an exploratory tool for investigating the functional organization of the brain and its modulation under different conditions. In this work we examine two indices that provide voxel based maps reflecting the intrinsic connectivity contrast (ICC) of individual tissue elements without the need for defining ROIs and hence require no a priori information or assumptions. These voxel based ICC measures can also be used to delineate regions of interest for further functional or network analyses. The indices were applied to the study of sevoflurane anesthesia-induced alterations in intrinsic connectivity. In concordance with previous studies, the results show that sevoflurane affects different brain circuits in a heterogeneous manner. In addition ICC analyses revealed changes in regions not previously identified using conventional ROI connectivity analyses, probably because of an inappropriate choice of the ROI in the earlier studies. This work highlights the importance of such voxel based connectivity methodology. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Diaschisis

                Bookmark

                Author and article information

                Journal
                CED
                Cerebrovasc Dis
                10.1159/issn.1015-9770
                Cerebrovascular Diseases
                S. Karger AG
                1015-9770
                1421-9786
                2015
                April 2015
                25 March 2015
                : 39
                : 3-4
                : 232-241
                Affiliations
                aDepartments of Medicine and Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, bMelbourne School of Psychological Sciences, and cDepartment of Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Vic., dPriority Research Centre for Translational Neuroscience and Mental Health, University of Newcastle and Hunter Medical Research Institute, Newcastle, N.S.W., and eFlorey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Vic., Australia
                Author notes
                *Dr. Nawaf Yassi, Department of Neurology, The Royal Melbourne Hospital, Grattan St., Parkville, VIC 3050 (Australia), E-Mail nawaf.yassi@mh.org.au
                Author information
                https://orcid.org/0000-0003-3632-9433
                https://orcid.org/0000-0001-7762-5832
                Article
                381105 Cerebrovasc Dis 2015;39:232-241
                10.1159/000381105
                25823493
                804e117f-55dc-406b-944b-5384f4574a10
                © 2015 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 05 November 2014
                : 18 February 2015
                Page count
                Figures: 5, Tables: 2, References: 38, Pages: 10
                Categories
                Original Paper

                Geriatric medicine,Neurology,Cardiovascular Medicine,Neurosciences,Clinical Psychology & Psychiatry,Public health
                Stroke,fMRI,Magnetic resonance imaging,Thalamus,Stroke recovery,Ischemic stroke

                Comments

                Comment on this article