9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Different mechanisms for gamma-glutamyltransferase-dependent resistance to carboplatin and cisplatin.

      Biochemical Pharmacology
      Antineoplastic Agents, pharmacology, Carboplatin, metabolism, Cisplatin, Drug Resistance, Neoplasm, Glutamate-Cysteine Ligase, Glutathione, analysis, HeLa Cells, Humans, gamma-Glutamyltransferase, physiology

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this work, we investigated the effect of gamma-glutamyltransferase (GGT) overexpression on cell viability after carboplatin treatment and compared with cisplatin. Carboplatin challenge of HeLa cells induced GGT and glutamate-cystine ligase (GCL) activities by 2- and 1.4-fold, respectively and concomitantly increased the intracellular reduced glutathione (GSH) level (1.5-fold). To study the role of GGT, HeLa-GGT cells, a stably transfected cell line overexpressing GGT (120-150 mU/mg protein) and the parental HeLa cells (10-15 mU/mg protein) were used. Both cell lines exhibited comparable viability (IC(50) approximately 150 microM) after carboplatin treatment when cultured in standard (250 microM cystine) medium. Culture in low (50 microM) cystine medium resulted in a dramatic decrease (approximately 90%) of the intracellular GSH level and to a 2.5-fold increase of carboplatin cytotoxicity (IC(50) approximately 60 microM). When GSH (50 microM) was included in the culture medium, only HeLa-GGT cells exhibited increased resistance to carboplatin. Using partially purified GGT from HeLa-GGT cells, we show that cisplatin forms adducts with cysteinylglycine, depending only on GGT activity whereas carboplatin did not efficiently react with cysteinylglycine. Thus, in this model system, GGT activity can affect platinum drugs cytotoxocity by two different ways: cisplatin can be detoxified extracellularly after reaction with the -SH group of cysteinylglycine; in the case of carboplatin, the supply of GSH precursors, initiated by GGT, increases the intracellular level of the tripeptide and provides enhanced defensive mechanisms to the cell.

          Related collections

          Author and article information

          Comments

          Comment on this article