2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Chitosan strengthened and multiple hydrogen bonds crosslinked styrene-acrylate coatings as conductive substrate with excellent mechanical performance

      , , , ,
      Progress in Organic Coatings
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: not found
          • Article: not found

          Self-healing polymers

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups.

            Supramolecular hydrogels formed by a host-guest interaction show self-healing properties. The cube-shaped hydrogels with β-cyclodextrin and adamantane guest molecules mend after being broken. The hydrogels sufficiently heal to form a single gel, and the initial strength is restored. Although contact between a freshly cut and uncut surface does not mend the gels, two freshly cut surfaces selectively mend. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Redox-responsive self-healing materials formed from host–guest polymers

              High-performance materials such as stimulus-responsive and maintenance-free self-healing materials1 2 3 4 5 6 7 8 9 have attracted much attention due to modern environmental and energy concerns. Recently developed functional soft materials possessing switching, self-healing and self-repairing features are expected to have diverse applications (for example, in architectural materials and external coatings). Some research groups have attempted to create switching soft materials such as remotely actuated nanomaterials10 11 12 13 14, artificial molecular muscles15 16, drug-delivery systems17 18, biosensors and shape memory materials. Although there are previous examples of supramolecular hydrogels19 where a sol−gel phase transition occurs using heat20, pH21, light22 23 24 25 or redox26 27 28 29 30 31 32 as a stimulus, it is difficult to create multi-functional soft materials owing to complicated designs and syntheses. Hence, redox stimulus-responsive self-healing materials have yet to be reported. Previously, we have reported stimulus-responsive supramolecular materials possessing host and guest polymers33 34 35. Supramolecular materials consisting of host and guest polymers have unique features due to selective complementary interactions. Host–guest interactions are versatile, and can be used to prepare supramolecular materials, which have easily tuned switching efficiencies and functions. Self-healing and self-repairing properties may be achieved using supramolecular materials that consist of host and guest polymers. The duality of supramolecular materials, which possess both switching and self-healing properties, has attracted both supramolecular chemists and materials scientists. Here, we report supramolecular materials using poly(acrylic acid) (pAA; M w=25×104) modified with cyclodextrins (pAA-CDs)36 as a host polymer and pAA with ferrocene (pAA-Fc) as a guest polymer. Ferrocene (Fc) derivatives have attracted attention due to their redox-responsive properties. Variations in the redox potential can induce a reversible sol−gel phase transition in a supramolecular hydrogel formed by pAA-6βCD and pAA-Fc. Moreover, supramolecular materials formed by host–guest interactions exhibit self-healing and self-repairing properties. Results Preparation of host and guest polymers Figure 1 depicts the chemical structures of the host polymers (pAA-CDs) and a guest polymer (pAA-Fc). pAA-CDs were prepared by the reaction of amino-CDs (6-amino-αCD and 6-amino-βCD) with pAA (Supplementary Fig. S1). According to 1H nuclear magnetic resonance (NMR) spectroscopy, amino-CDs were substituted into 4−5% of the carboxylic acid groups of pAA (Supplementary Fig. S2 and Supplementary Table S1). These host polymers are called pAA-6αCD and pAA-6βCD for substitutions by 6-amino-αCD and 6-amino-βCD, respectively. pAA-Fc was prepared by the reaction of aminoethylamide Fc with pAA (Supplementary Fig. S3), and Fc was substituted into 2.7% of the carboxylic acid groups of pAA (Supplementary Fig. S4 and Supplementary Table S1). Hydrogelation between host and guest polymers Figure 2 shows photographs of hydrogelation between the host polymers and a guest polymer (2 wt%) in a pH 9 boric acid/KCl/NaOH buffer solution. The 1:1 mixture of a 2 wt% solution of pAA-6αCD/pAA-Fc, pAA/pAA-6βCD or pAA/pAA-Fc in an aqueous solution had a negligible effect on the viscosity. On the other hand, the mixed solution of pAA-6βCD/pAA-Fc selectively increased the viscosity of the solution to yield a hydrogel (Supplementary Movie 1). These results indicate that not only the host–guest complementarity but also multipoint crosslinks have important roles in forming the supramolecular hydrogel. Figure 2 shows storage elastic moduli (G′) for pAA-6αCD/pAA-Fc, pAA-6βCD/pAA-Fc, pAA/pAA-6βCD, and pAA/pAA-Fc, pAA-6βCD, and pAA-Fc (1+1 wt%) in pH 9 buffer solutions, respectively. Although other samples exhibited G′ G′′) in the frequency range 0.01−100 rad·s−1, which was characterized by dynamic viscoelastic measurements (Supplementary Figs S17 and S18). Supplementary Figure S19 demonstrates that the morphology of the pAA-6βCD/pAA-Fc hydrogel remained the same for over 72 h. We measured the rheological property of the pAA-6βCD/pAA-Fc hydrogel (1+1 wt%) under small (0.1%) and large (200%) strains (Supplementary Fig. S20). Under a 0.1% strain, G′ was larger than G′′, indicating that the pAA-6βCD/pAA-Fc hydrogel formed a self-standing hydrogel. However, the G′ and G′′ values were inverted under 200% strain, indicating that the pAA-6βCD/pAA-Fc hydrogel was converted into the sol state. We assumed that the interaction between the β-CD and Fc units was cutoff by the 200% strain in the sol state of pAA-6βCD/pAA-Fc. When placed under 0.1% strain, G′ and G′′ returned to their original values. G′ of the pAA-6βCD/pAA-Fc sol recovered to 90% of its initial state in 20 s, and the hydrogel was observed in 500 s. This recovery behaviour was repeatable for at least three cycles of varying strains. The reason that the pAA-6βCD/pAA-Fc sol transformed to the hydrogel is because the inclusion complex between the βCD and Fc units was reconstructed under 0.1% strain, suggesting that the characteristic self-healing property of pAA-6βCD/pAA-Fc hydrogel is formed by a host–guest interaction. Macroscopic self-healing of pAA-6βCD/pAA-Fc hydrogel Based on this rheological property, we confirmed the self-healing ability of the pAA-6βCD/pAA-Fc hydrogel. A cube-shaped pAA-6βCD/pAA-Fc hydrogel (1+1 wt%) was cut in half using a razor edge, and then rejoined (Fig. 4a). After standing for 24 h, the crack disappeared, and the sample hydrogel sufficiently healed to form one gel. To demonstrate the complementary host–guest interaction between the β-CD and the Fc groups, competitive guest and host molecules were added to the cut plane of the pAA-6βCD/pAA-Fc hydrogel (Supplementary Fig. S21). A 3 mM solution of AdCANa as the competitive guest, β-CD as the competitive host or D-glucose as a reference sample was placed on the cut surfaces, and then the two gels were reattached. After 24 h, the samples with a competitive guest or host did not heal, whereas the sample with D-glucose healed regardless of the amount of D-glucose added. These results indicate that the self-healing property is due to the Fc and β-CD moieties, which form an inclusion complex on the cut surfaces of hydrogels. The adhesive strength of the two gels was confirmed by the wedge-shaped strain compression test (Supplementary Fig. S22). After the two gels were rejoined for 24 h, the adhesion strength on the joint surface reached a steady value, indicating that the interaction of the Fc and β-CD moieties achieved equilibrium on the surface. The adhesion strength on the joint surface recovered 84% of the initial gel's strength after 24 h (Supplementary Fig. S23). Controlling self-healing ability by redox reaction Finally, we investigated the control of the self-repairing property of the pAA-6βCD/pAA-Fc hydrogel by redox stimuli. A pAA-6βCD/pAA-Fc hydrogel (2 wt%) was cut in half, and the cut surfaces were coated with an aqueous solution of NaClO (7 mM, 20 μl). Then the two pieces were reattached according to the experimental operation shown in Figure 4b. After 24 h, healing was not observed. The NaClO-applied gels did not form an inclusion complex between the β-CD and Fc+ units. However, the surface re-adhered after spreading GSH aq. (20 mM, 20 μl), a reducing agent, onto the oxidized cut surface and allowing the gel to stand for 24 h. Discussion We successfully realized reversible sol−gel switching and a self-healing supramolecular hydrogel system consisting of pAA-6βCD/pAA-Fc. Although microscale switching of supramolecular complexes by redox is well known, a macroscale morphological change is difficult to achieve. This work demonstrates that intelligent supramolecular hydrogels may be formed using a main chain with a sufficient length and an adequate number of guest molecules to generate reversible multipoint crosslinks between pAA-6βCD/pAA-Fc. A redox reaction alters the morphology of a supramolecular hydrogel by controlling the formation of an inclusion complex. These stimulus-responsive self-healing properties are similar to the selective cell-adhesive protein observed on a cellular surface. Stimulus-responsive self-healing properties have many general applications. Thus, we believe that these stimulus-responsive and healing properties may eventually be used in stimulus-responsive drug-delivery carriers and peripheral vascular embolization materials with healing properties that target cancer cells and myoma. Methods Materials Poly(acrylic acid) (pAA, M w=250,000) and D2O were obtained from Wako Pure Chemical Industries, Ltd. α-Cyclodextrin and β-cyclodextrin were obtained from Junsei Chemical Co., Ltd. Triethylamine (Et3N), ethylenediamine, sodium hydroxide, potassium hydroxide, boric acid, potassium chloride and sodium hypochlorite aqueous solution were obtained from Nacalai Tesque Inc. Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP), 3-amino-3-deoxy-α-cyclodextrin and 3-amino-3-deoxy-β-cyclodextrin, ferrocenecarboxylic acid, adamantanecarboxylic acid and oxalyl chloride were obtained from Tokyo Kasei Inc. Glutathione was obtained from KOHJIN Co., Ltd. DMSO-d 6 was obtained from Merck & Co., Inc. A highly porous synthetic resin (DIAION HP-20) used for column chromatography was purchased from Mitsubishi Chemical Co., Ltd. Dialytic tube (MWCO=14,000) was purchased from Sanko Junyaku Inc. Water used for the preparation of the aqueous solutions (except for NMR measurements) was purified with a Millipore Elix 5 system (Millipore). Other reagents were used without further purification. Measurements The 1H NMR and 2D NMR (NOESY) spectra were recorded at 500 MHz with a JEOL JNM-ECA 500 NMR spectrometer (JEOL). Chemical shifts were referenced to the solvent values (δ=2.49 p.p.m. for dimethylsulphoxide and δ=4.79 p.p.m. for HOD). The ultraviolet–visible absorption spectra were recorded with a JASCO V-650 and a Hitachi U-4100 spectrometer in water with 1 cm quartz cell at room temperature. Circular dichroism spectra and ultraviolet-visible spectra were recorded on a JASCO J820 spectrometer in water with 1 cm quartz cell at room temperature. Dynamic viscoelasticity was measured using an Anton Paar MCR301 rheometer (Anton Paar). Mechanical properties of the gel were measured by the mechanical tension testing system (Rheoner, RE-33005, Yamaden Ltd.). Preparation and characterization of pAA-CDs Poly(acrylic acid) (M w =250,000) was dissolved in 20 ml of N,N-dimethylformamide (DMF). To this solution, PyBOP (0.06 eq. of acrylic acid unit) and Et3N (0.06 eq. of acrylic acid unit) were added. After stirring for 2 h, a mono-amino-mono-deoxy-CD was added, and the solution was stirred for another 12 h at room temperature. The polymer product was reprecipitated from 200 ml of ethanol and washed with ethanol. The polymer was dissolved in water, and dialyzed for 12 days with a dialytic tube (MWCO=14,000). After dialysis, each pAA–CD was obtained by freeze–drying. pAA-6αCD; 1H NMR (500 MHz, pD 9 buffer, 30°C): δ 1.56 to 2.12 (CH 2 (pAA)), 2.31–2.65 (CH (pAA)), 3.61–3.80 (C2,4 H (CD)), 3.80–4.11 (C3,5,6 H (CD)), 5.00–5.23 (C1 H (CD)). pAA-6βCD; 1H NMR (500 MHz, pD 9 buffer, 30°C): δ 1.56–2.12 (CH 2 (pAA)), 2.31–2.65 (CH (pAA)), 3.61–3.80 (C2,4 H (CD)), 3.80–4.10 (C3,5,6 H (CD)), 5.05–5.22 (C1 H (CD)). Synthesis and characterization of Fc-CONH-(CH2)2-NH2 Ferrocenecarboxylic acid of 2.00 g (8.7 mmol) was suspended in 120 ml of dichloromethane (DCM). Then 2 ml (23.3 mmol, 2.7 eq.) of oxalyl chloride was added dropwise, and the suspension was stirred for 3 h at room temperature. The orange suspension turned into a red solution. After evaporating the solvent, ferrocenecarboxyl chloride (red solid) was dissolved in 60 ml of DCM. A volume of 6 ml (89.9 mmol, 10 eq.) of ethylenediamine was dissolved in 60 ml of DCM, and the ferrocenecarboxyl chloride solution was added dropwise. After stirring overnight at room temperature, the solution was washed with 80 ml of 10% KOH aq., and the DCM layer was collected and evaporated. The orange solid was washed with 300 ml of hexane: ethyl acetate=9:1, and the solid product was collected via a centrifuge and dried for 4 days at 50 °C to obtain Fc-CONH-(CH2)2-NH2 as a yellow powder in 83% yield. 1H NMR (500 MHz, D2O, 30 °C): δ 2.90 (2 H, t, Fc-CONH-CH2-CH 2-NH2), 3.46 (2 H, t, Fc-CONH-CH 2-CH2-NH2), 4.36 (5 H, s, Cp), 4.61 (2 H, t, Cp), 4.89 (2 H, t, Cp). Synthesis and characterization of pAA-Fc PyBOP (0.22 g, 0.42 mmol, 0.06 eq. of acrylic acid unit) was added to a 40 ml DMF solution of pAA (M av=250,000, 500.3 mg). In all, 0.95 g (0.35 mmol, 0.05 eq. of acrylic acid unit) of Fc-CONH-(CH2)2-NH2 was dissolved in 10 ml of DMF, and 0.06 ml (0.43 mmol, 0.06 eq. of acrylic acid unit) of Et3N was added. This solution was added dropwise to the pAA solution and stirred for 12 h at room temperature. After stirring, the solution was diluted with water and dialyzed in water for 7 days with dialytic tube (MWCO=14,000). After dialysis, pAA-Fc was obtained by freeze–drying. 1H NMR (500 MHz, pD 9 buffer, 30 °C): δ 1.40–1.91 (CH 2 (pAA)), 2.05–2.50 (CH (pAA)), 4.37 (s, Cp), 4.61 (s, Cp), 4.91 (s, Cp (overlapped with HOD)). Breaking stress measurement of the pAA-6βCD/pAA-Fc hydrogel One centimetre cube-shaped pAA-6βCD/pAA-Fc hydrogel (3 wt%) was cut in half using a razor edge, and then rejoined at 24°C (waiting time <5 min.). After standing for 24 h, the breaking stress was measured by a creep metre with a wedge-shaped plunger (Supplementary Figs S22 and S23). Author contributions M.N. performed syntheses, characterizations and spectroscopic studies. Y.T. conceived and directed the study, contributed to all experiments and wrote the paper. H.Y. supported characterizations. A.H. oversaw the project as well as contributed to the execution of the experiments and interpretation of the results. Additional information How to cite this article: Nakahata, M. et al. Redox responsive self-healing materials formed from host–guest polymers. Nat. Commun. 2:511 doi: 10.1038/ncomms1521 (2011). Supplementary Material Supplementary Figures and Tables Supplementary Figures S1-S23 and Supplementary Table S1 Supplementary Movie 1 Gel formation between a guest polymer, PAFc (a poly(acrylic acid) containing ferrocene groups), and a host polymer, PA-beta-CD (a poly(acrylic acid) containing beta CDs), in aqueous solution.
                Bookmark

                Author and article information

                Journal
                Progress in Organic Coatings
                Progress in Organic Coatings
                Elsevier BV
                03009440
                March 2022
                March 2022
                : 164
                : 106705
                Article
                10.1016/j.porgcoat.2022.106705
                8088f332-8bc6-49ca-b1ee-735597661070
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article