11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Maximizing Sensitivity of the Psychomotor Vigilance Test (PVT) to Sleep Loss

      ,
      Sleep
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The psychomotor vigilance test (PVT) is among the most widely used measures of behavioral alertness, but there is large variation among published studies in PVT performance outcomes and test durations. To promote standardization of the PVT and increase its sensitivity and specificity to sleep loss, we determined PVT metrics and task durations that optimally discriminated sleep deprived subjects from alert subjects. Repeated-measures experiments involving 10-min PVT assessments every 2 h across both acute total sleep deprivation (TSD) and 5 days of chronic partial sleep deprivation (PSD). Controlled laboratory environment. 74 healthy subjects (34 female), aged 22-45 years. TSD experiment involving 33 h awake (N = 31 subjects) and a PSD experiment involving 5 nights of 4 h time in bed (N = 43 subjects). In a paired t-test paradigm and for both TSD and PSD, effect sizes of 10 different PVT performance outcomes were calculated. Effect sizes were high for both TSD (1.59-1.94) and PSD (0.88-1.21) for PVT metrics related to lapses and to measures of psychomotor speed, i.e., mean 1/RT (response time) and mean slowest 10% 1/RT. In contrast, PVT mean and median RT outcomes scored low to moderate effect sizes influenced by extreme values. Analyses facilitating only portions of the full 10-min PVT indicated that for some outcomes, high effect sizes could be achieved with PVT durations considerably shorter than 10 min, although metrics involving lapses seemed to profit from longer test durations in TSD. Due to their superior conceptual and statistical properties and high sensitivity to sleep deprivation, metrics involving response speed and lapses should be considered primary outcomes for the 10-min PVT. In contrast, PVT mean and median metrics, which are among the most widely used outcomes, should be avoided as primary measures of alertness. Our analyses also suggest that some shorter-duration PVT versions may be sensitive to sleep loss, depending on the outcome variable selected, although this will need to be confirmed in comparative analyses of separate duration versions of the PVT. Using both sensitive PVT metrics and optimal test durations maximizes the sensitivity of the PVT to sleep loss and therefore potentially decreases the sample size needed to detect the same neurobehavioral deficit. We propose criteria to better standardize the 10-min PVT and facilitate between-study comparisons and meta-analyses.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Book: not found

          An Introduction to the Bootstrap

          Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation.

            To inform the debate over whether human sleep can be chronically reduced without consequences, we conducted a dose-response chronic sleep restriction experiment in which waking neurobehavioral and sleep physiological functions were monitored and compared to those for total sleep deprivation. The chronic sleep restriction experiment involved randomization to one of three sleep doses (4 h, 6 h, or 8 h time in bed per night), which were maintained for 14 consecutive days. The total sleep deprivation experiment involved 3 nights without sleep (0 h time in bed). Each study also involved 3 baseline (pre-deprivation) days and 3 recovery days. Both experiments were conducted under standardized laboratory conditions with continuous behavioral, physiological and medical monitoring. A total of n = 48 healthy adults (ages 21-38) participated in the experiments. Noctumal sleep periods were restricted to 8 h, 6 h or 4 h per day for 14 days, or to 0 h for 3 days. All other sleep was prohibited. Chronic restriction of sleep periods to 4 h or 6 h per night over 14 consecutive days resulted in significant cumulative, dose-dependent deficits in cognitive performance on all tasks. Subjective sleepiness ratings showed an acute response to sleep restriction but only small further increases on subsequent days, and did not significantly differentiate the 6 h and 4 h conditions. Polysomnographic variables and delta power in the non-REM sleep EEG-a putative marker of sleep homeostasis--displayed an acute response to sleep restriction with negligible further changes across the 14 restricted nights. Comparison of chronic sleep restriction to total sleep deprivation showed that the latter resulted in disproportionately large waking neurobehavioral and sleep delta power responses relative to how much sleep was lost. A statistical model revealed that, regardless of the mode of sleep deprivation, lapses in behavioral alertness were near-linearly related to the cumulative duration of wakefulness in excess of 15.84 h (s.e. 0.73 h). Since chronic restriction of sleep to 6 h or less per night produced cognitive performance deficits equivalent to up to 2 nights of total sleep deprivation, it appears that even relatively moderate sleep restriction can seriously impair waking neurobehavioral functions in healthy adults. Sleepiness ratings suggest that subjects were largely unaware of these increasing cognitive deficits, which may explain why the impact of chronic sleep restriction on waking cognitive functions is often assumed to be benign. Physiological sleep responses to chronic restriction did not mirror waking neurobehavioral responses, but cumulative wakefulness in excess of a 15.84 h predicted performance lapses across all four experimental conditions. This suggests that sleep debt is perhaps best understood as resulting in additional wakefulness that has a neurobiological "cost" which accumulates over time.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night.

              To determine whether a cumulative sleep debt (in a range commonly experienced) would result in cumulative changes in measures of waking neurobehavioral alertness, 16 healthy young adults had their sleep restricted 33% below habitual sleep duration, to an average 4.98 hours per night [standard deviation (SD) = 0.57] for seven consecutive nights. Subjects slept in the laboratory, and sleep and waking were monitored by staff and actigraphy. Three times each day (1000, 1600, and 2200 hours) subjects were assessed for subjective sleepiness (SSS) and mood (POMS) and were evaluated on a brief performance battery that included psychomotor vigilance (PVT), probed memory (PRM), and serial-addition testing, Once each day they completed a series of visual analog scales (VAS) and reported sleepiness and somatic and cognitive/emotional problems. Sleep restriction resulted in statistically robust cumulative effects on waking functions. SSS ratings, subscale scores for fatigue, confusion, tension, and total mood disturbance from the POMS and VAS ratings of mental exhaustion and stress were evaluated across days of restricted sleep (p = 0.009 to p = 0.0001). PVT performance parameters, including the frequency and duration of lapses, were also significantly increased by restriction (p = 0.018 to p = 0.0001). Significant time-of-day effects were evident in SSS and PVT data, but time-of-day did not interact with the effects of sleep restriction across days. The temporal profiles of cumulative changes in neurobehavioral measures of alertness as a function of sleep restriction were generally consistent. Subjective changes tended to precede performance changes by 1 day, but overall changes in both classes of measure were greatest during the first 2 days (P1, P2) and last 2 days (P6, P7) of sleep restriction. Data from subsets of subjects also showed: 1) that significant decreases in the MSLT occurred during sleep restriction, 2) that the elevated sleepiness and performance deficits continued beyond day 7 of restriction, and 3) that recovery from these deficits appeared to require two full nights of sleep. The cumulative increase in performance lapses across days of sleep restriction correlated closely with MSLT results (r = -0.95) from an earlier comparable experiment by Carskadon and Dement (1). These findings suggest that cumulative nocturnal sleep debt had a dynamic and escalating analog in cumulative daytime sleepiness and that asymptotic or steady-state sleepiness was not achieved in response to sleep restriction.
                Bookmark

                Author and article information

                Journal
                Sleep
                Oxford University Press (OUP)
                0161-8105
                1550-9109
                May 2011
                May 01 2011
                May 01 2011
                May 2011
                May 01 2011
                May 01 2011
                : 34
                : 5
                : 581-591
                Article
                10.1093/sleep/34.5.581
                3079937
                21532951
                8090d5d3-41a0-4886-9c2b-75ad16cba2ff
                © 2011
                History

                Comments

                Comment on this article