17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Developing safe and effective cancer vaccine formulations is a primary focus in the field of cancer immunotherapy. Dendritic cells (DC) are currently employed as cellular vaccine in clinical trials of tumor immunotherapy. Recognizing the critical role of DCs in initiating anti-tumor immunity has resulted in the development of several strategies that target vaccine antigens to DCs to trigger anti-tumor T cell responses. To increase the efficiency of antigen delivery systems for anti-tumor vaccines, encapsulation of tumor-associated antigens in polymer nanoparticles (NPs) has been established.

          Methods

          In this study, the effect of tumor lysate antigen obtained from three stage III breast cancer tissues encapsulated within PLGA NPs to enhance the DC maturation was investigated. The T-cell immune response activation was then fallowed up. Fresh breast tumors were initially used to generate tumor lysate antigens containing poly lactic-co-glycolic acid (PLGA) NP. The encapsulation efficiency and release kinetics were profiled. The efficiency of encapsulation was measured using Bradford protein assays measuring the dissolved NPs. The stability of released antigen from NPs was verified using SDS-PAGE. To evaluate the hypothesis that NPs enhances antigen presentation, including soluble tumor lysate, tumor lysate containing NPs and control NPs the efficiency of NP-mediated tumor lysate delivery to DCs was evaluated by assessing CD3+ T-cell stimulation after T cell/and DCs co-culture.

          Results

          The rate of encapsulation was increased by enhancing the antigen concentration of tumor lysate. However, increasing the antigen concentration diminished the encapsulation efficiency. In addition, higher initial protein contenting NPs led to a greater cumulative release. All three patients released variable amounts of IFN-γ, IL-10, IL-12 and IL-4 in response to re-stimulation. T cells stimulated with lysate-pulsed DCs induced a substantial increase in IFN-γ and IL-12 production. We demonstrated that NPs containing tumor lysate can induce maturation and activation of DCs, as antigen alone does.

          Conclusion

          PLGA-NPs are attractive vehicles for protein antigen delivery which effectively induce stimulation and maturation of DCs, allowing not only an enhanced antigen processing and immunogenicity or improved antigen stability, but also the targeted delivery and slow release of antigens.

          Related collections

          Most cited references 26

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer immunotherapy: moving beyond current vaccines.

          Great progress has been made in the field of tumor immunology in the past decade, but optimism about the clinical application of currently available cancer vaccine approaches is based more on surrogate endpoints than on clinical tumor regression. In our cancer vaccine trials of 440 patients, the objective response rate was low (2.6%), and comparable to the results obtained by others. We consider here results in cancer vaccine trials and highlight alternate strategies that mediate cancer regression in preclinical and clinical models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticle-based targeted drug delivery.

            Nanotechnology could be defined as the technology that has allowed for the control, manipulation, study, and manufacture of structures and devices in the "nanometer" size range. These nano-sized objects, e.g., "nanoparticles", take on novel properties and functions that differ markedly from those seen from items made of identical materials. The small size, customized surface, improved solubility, and multi-functionality of nanoparticles will continue to open many doors and create new biomedical applications. Indeed, the novel properties of nanoparticles offer the ability to interact with complex cellular functions in new ways. This rapidly growing field requires cross-disciplinary research and provides opportunities to design and develop multifunctional devices that can target, diagnose, and treat devastating diseases such as cancer. This article presents an overview of nanotechnology for the biologist and discusses the attributes of our novel XPclad((c)) nanoparticle formulation that has shown efficacy in treating solid tumors, single dose vaccination, and oral delivery of therapeutic proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell biology of antigen processing in vitro and in vivo.

              The conversion of exogenous and endogenous proteins into immunogenic peptides recognized by T lymphocytes involves a series of proteolytic and other enzymatic events culminating in the formation of peptides bound to MHC class I or class II molecules. Although the biochemistry of these events has been studied in detail, only in the past few years has similar information begun to emerge describing the cellular context in which these events take place. This review thus concentrates on the properties of antigen-presenting cells, especially those aspects of their overall organization, regulation, and intracellular transport that both facilitate and modulate the processing of protein antigens. Emphasis is placed on dendritic cells and the specializations that help account for their marked efficiency at antigen processing and presentation both in vitro and, importantly, in vivo. How dendritic cells handle antigens is likely to be as important a determinant of immunogenicity and tolerance as is the nature of the antigens themselves.
                Bookmark

                Author and article information

                Contributors
                soodabeh.iranpoor@gmail.com
                v.nejati@urmia.ac.ir
                +989144432650 , n.delirezh@urmia.ac.ir
                pb.biparva@gmail.com
                shirian85@gmail.com
                Journal
                J Exp Clin Cancer Res
                J. Exp. Clin. Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central (London )
                0392-9078
                1756-9966
                26 October 2016
                26 October 2016
                2016
                : 35
                Affiliations
                [1 ]Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
                [2 ]Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
                [3 ]Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
                [4 ]Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
                [5 ]Shiraz Molecular Pathology Research Center, Dr Daneshbod Pathology Laboratory, Shiraz, Iran
                Article
                444
                10.1186/s13046-016-0444-6
                5080692
                27782834
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Oncology & Radiotherapy

                plga, dendritic cells, tumor associated antigen, nanoparticles

                Comments

                Comment on this article