1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bothrops atrox venom: Biochemical properties and cellular phenotypes of three highly toxic classes of toxins

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          PROTEIN MEASUREMENT WITH THE FOLIN PHENOL REAGENT

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complex cocktails: the evolutionary novelty of venoms.

            Venoms have evolved on numerous occasions throughout the animal kingdom. These 'biochemical weapon systems' typically function to facilitate, or protect the producing animal from, predation. Most venomous animals remain unstudied despite venoms providing model systems for investigating predator-prey interactions, molecular evolution, functional convergence, and novel targets for pharmaceutical discovery. Through advances in 'omic' technologies, venom composition data have recently become available for several venomous lineages, revealing considerable complexity in the processes responsible for generating the genetic and functional diversity observed in many venoms. Here, we review these recent advances and highlight the ecological and evolutionary novelty of venom systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Snakebite envenoming

              Snakebite envenoming is a neglected tropical disease that kills >100,000 people and maims >400,000 people every year. Impoverished populations living in the rural tropics are particularly vulnerable; snakebite envenoming perpetuates the cycle of poverty. Snake venoms are complex mixtures of proteins that exert a wide range of toxic actions. The high variability in snake venom composition is responsible for the various clinical manifestations in envenomings, ranging from local tissue damage to potentially life-threatening systemic effects. Intravenous administration of antivenom is the only specific treatment to counteract envenoming. Analgesics, ventilator support, fluid therapy, haemodialysis and antibiotic therapy are also used. Novel therapeutic alternatives based on recombinant antibody technologies and new toxin inhibitors are being explored. Confronting snakebite envenoming at a global level demands the implementation of an integrated intervention strategy involving the WHO, the research community, antivenom manufacturers, regulatory agencies, national and regional health authorities, professional health organizations, international funding agencies, advocacy groups and civil society institutions.
                Bookmark

                Author and article information

                Journal
                Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
                Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
                Elsevier BV
                15709639
                November 2023
                November 2023
                : 1871
                : 6
                : 140930
                Article
                10.1016/j.bbapap.2023.140930
                37442518
                815ae3ce-7a7b-4284-a401-6d566705bb80
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article