20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association of 25 bp Deletion in MYBPC3 Gene with Left Ventricle Dysfunction in Coronary Artery Disease Patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rationale

          Mutations in MYBPC3 encoding cardiac myosin binding protein C are common genetic cause of hereditary cardiac myopathies. An intronic 25-bp deletion in MYBPC3 at 3′ region is associated with dilated (DCM) and hypertrophic (HCM) cardiomyopathies in Southeast Asia. However, the frequency of MYBPC3 25 bp deletion and associated clinical presentation has not been established in an unrelated cohort of left ventricular dysfunction (LVD) secondary to coronary artery disease (CAD) patients.

          Objective

          We sought to determine the role of MYBPC3 25 bp polymorphism on LVD in two cohorts of CAD patients.

          Methods and Results

          The study included 265 consecutive patients with angiographically confirmed CAD and 220 controls. MYBPC3 25 bp polymorphism was determined by polymerase chain reaction. Our results showed that carrier status of MYBPC3 25 bp deletion was associated with significant compromised left ventricle ejection fraction (LVEF ≤45) in CAD patients (p value  =  <0 .001; OR = 4.49). To validate our results, we performed a replication study in additional 140 cases with similar clinical characteristics and results again confirmed consistent findings (p = 0.029; OR = 3.3). Also, presence of the gene deletion did not have significant association in CAD patients with preserved ejection fraction (LVEF>45) (p value  = 0.1; OR  = 2.3).

          Conclusion

          The frequency of MYBPC3 DW genotype and D allele was associated with compromised LVEF implying that genetic variants of MYBPC3 encoding mutant structural sarcomere protein could increase susceptibility to left ventricular dysfunction. Therefore, 25 bp deletion in MYBPC3 may represent a genetic marker for cardiac failure in CAD patients from Southeast Asia.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms.

          We have presented recommendations for the optimum acquisition of quantitative two-dimensional data in the current echocardiographic environment. It is likely that advances in imaging may enhance or supplement these approaches. For example, three-dimensional reconstruction methods may greatly augment the accuracy of volume determination if they become more efficient. The development of three-dimensional methods will depend in turn on vastly improved transthoracic resolution similar to that now obtainable by transesophageal echocardiography. Better resolution will also make the use of more direct methods of measuring myocardial mass practical. For example, if the epicardium were well resolved in the long-axis apical views, the myocardial shell volume could be measured directly by the biplane method of discs rather than extrapolating myocardial thickness from a single short-axis view. At present, it is our opinion that current technology justifies the clinical use of the quantitative two-dimensional methods described in this article. When technically feasible, and if resources permit, we recommend the routine reporting of left ventricular ejection fraction, diastolic volume, mass, and wall motion score.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia.

            Heart failure is a leading cause of mortality in South Asians. However, its genetic etiology remains largely unknown. Cardiomyopathies due to sarcomeric mutations are a major monogenic cause for heart failure (MIM600958). Here, we describe a deletion of 25 bp in the gene encoding cardiac myosin binding protein C (MYBPC3) that is associated with heritable cardiomyopathies and an increased risk of heart failure in Indian populations (initial study OR = 5.3 (95% CI = 2.3-13), P = 2 x 10(-6); replication study OR = 8.59 (3.19-25.05), P = 3 x 10(-8); combined OR = 6.99 (3.68-13.57), P = 4 x 10(-11)) and that disrupts cardiomyocyte structure in vitro. Its prevalence was found to be high (approximately 4%) in populations of Indian subcontinental ancestry. The finding of a common risk factor implicated in South Asian subjects with cardiomyopathy will help in identifying and counseling individuals predisposed to cardiac diseases in this region.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cardiac myosin binding protein C phosphorylation is cardioprotective.

              Cardiac myosin binding protein C (cMyBP-C) has three phosphorylatable serines at its N terminus (Ser-273, Ser-282, and Ser-302), and the residues' phosphorylation states may alter thick filament structure and function. To examine the effects of cMyBP-C phosphorylation, we generated transgenic mice with cardiac-specific expression of a cMyBP-C in which the three phosphorylation sites were mutated to aspartic acid, mimicking constitutive phosphorylation (cMyBP-C(AllP+)). The allele was bred into a cMyBP-C null background (cMyBP-C((t/t))) to ensure the absence of endogenous dephosphorylated cMyBP-C. cMyBP-C(AllP+) was incorporated normally into the cardiac sarcomere and restored normal cardiac function in the null background. However, subtle changes in sarcomere ultrastructure, characterized by increased distances between the thick filaments, indicated that phosphomimetic cMyBP-C affects thick-thin filament relationships, and yeast two-hybrid data and pull-down studies both showed that charged residues in these positions effectively prevented interaction with the myosin heavy chain. Confirming the physiological relevance of these data, the cMyBP-C(AllP+:(t/t)) hearts were resistant to ischemia-reperfusion injury. These data demonstrate that cMyBP-C phosphorylation functions in maintaining thick filament spacing and structure and can help protect the myocardium from ischemic injury.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                7 September 2011
                : 6
                : 9
                Affiliations
                [1 ]Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences Lucknow (UP), Lucknow, India
                [2 ]Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences Lucknow (UP), Lucknow, India
                [3 ]Bioinformatic Center, Biotech Park Lucknow (UP), Lucknow, India
                Universite de Montreal, Canada
                Author notes

                Conceived and designed the experiments: BM NG AS. Performed the experiments: AS. Analyzed the data: AS SG. Contributed reagents/materials/analysis tools: AS RK PKS TM. Wrote the paper: AS BM NG.

                Article
                PONE-D-11-02017
                10.1371/journal.pone.0024123
                3168477
                21915287
                815f6ea1-1356-4098-80de-3e1b76fe2a69
                Srivastava et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 7
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Cardiovascular System
                Genetics
                Genetics of Disease
                Human Genetics
                Medicine
                Cardiovascular
                Atherosclerosis
                Cardiomyopathies
                Coronary Artery Disease
                Heart Failure
                Clinical Genetics

                Uncategorized

                Comments

                Comment on this article