90
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Performance evaluation of the Pima™ point-of-care CD4 analyser using capillary blood sampling in field tests in South Africa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Point-of-care CD4 testing can provide immediate CD4 reporting at HIV-testing sites. This study evaluated performance of capillary blood sampling using the point-of-care Pima™ CD4 device in representative primary health care clinics doing HIV testing.

          Methods

          Prior to testing, prescribed capillary-sampling and instrument training was undertaken by suppliers across all sites. Matching venous EDTA samples were drawn throughout for comparison to laboratory predicate methodology (PLG/CD4). In Phase I, Pima™ cartridges were pipette-filled with EDTA venous blood in the laboratory (N = 100). In Phase II (N = 77), Pima™ CD4 with capillary sampling was performed by a single operator in a hospital-based antenatal clinic. During subsequent field testing, Pima™ CD4 with capillary sampling was performed in primary health care clinics on HIV-positive patients by multiple attending nursing personnel in a rural clinic (Phase-IIIA, N = 96) and an inner-city clinic (Phase-IIIB, N = 139).

          Results

          Pima™ CD4 compared favourably to predicate/CD4 when cartridges were pipette-filled with venous blood (bias -17.3 ± STDev = 36.7 cells/mm 3; precision-to-predicate %CV < 6%). Decreased precision of Pima™ CD4 to predicate/CD4 (varying from 17.6 to 28.8%SIM CV; mean bias = 37.9 ± STDev = 179.5 cells/mm 3) was noted during field testing in the hospital antenatal clinic. In the rural clinic field-studies, unacceptable precision-to-predicate and positive bias was noted (mean 28.4%SIM CV; mean bias = +105.7 ± STDev = 225.4 cells/mm 3). With additional proactive manufacturer support, reliable performance was noted in the subsequent inner-city clinic field study where acceptable precision-to-predicate (11%SIM CV) and less bias of Pima™ to predicate was shown (BA bias ~11 ± STDev = 69 cells/mm 3).

          Conclusions

          Variable precision of Pima™ to predicate CD4 across study sites was attributable to variable capillary sampling. Poor precision was noted in the outlying primary health care clinic where the system is most likely to be used. Stringent attention to capillary blood collection technique is therefore imperative if technologies like Pima™ are used with capillary sampling at the POC. Pima™ CD4 analysis with venous blood was shown to be reproducible, but testing at the point of care exposes operators to biohazard risk related to uncapping vacutainer samples and pipetting of blood, and is best placed in smaller laboratories using established principles of Good Clinical Laboratory Practice. The development of capillary sampling quality control methods that assure reliable CD4 counts at the point of care are awaited.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical methods for assessing agreement between two methods of clinical measurement.

          In clinical measurement comparison of a new measurement technique with an established one is often needed to see whether they agree sufficiently for the new to replace the old. Such investigations are often analysed inappropriately, notably by using correlation coefficients. The use of correlation is misleading. An alternative approach, based on graphical techniques and simple calculations, is described, together with the relation between this analysis and the assessment of repeatability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Laboratory medicine in Africa: a barrier to effective health care.

            Providing health care in sub-Saharan Africa is a complex problem. Recent reports call for more resources to assist in the prevention and treatment of infectious diseases that affect this population, but policy makers, clinicians, and the public frequently fail to understand that diagnosis is essential to the prevention and treatment of disease. Access to reliable diagnostic testing is severely limited in this region, and misdiagnosis commonly occurs. Understandably, allocation of resources to diagnostic laboratory testing has not been a priority for resource-limited health care systems, but unreliable and inaccurate laboratory diagnostic testing leads to unnecessary expenditures in a region already plagued by resource shortages, promotes the perception that laboratory testing is unhelpful, and compromises patient care. We explore the barriers to implementing consistent testing within this region and illustrate the need for a more comprehensive approach to the diagnosis of infectious diseases, with an emphasis on making laboratory testing a higher priority.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of point-of-care CD4 cell count tests on retention of patients and rates of antiretroviral therapy initiation in primary health clinics: an observational cohort study.

              Loss to follow-up of HIV-positive patients before initiation of antiretroviral therapy can exceed 50% in low-income settings and is a challenge to the scale-up of treatment. We implemented point-of-care counting of CD4 cells in Mozambique and assessed the effect on loss to follow-up before immunological staging and treatment initiation. In this observational cohort study, data for enrolment into HIV management and initiation of antiretroviral therapy were extracted retrospectively from patients' records at four primary health clinics providing HIV treatment and point-of-care CD4 services. Loss to follow-up and the duration of each preparatory step before treatment initiation were measured and compared with baseline data from before the introduction of point-of-care CD4 testing. After the introduction of point-of-care CD4 the proportion of patients lost to follow-up before completion of CD4 staging dropped from 57% (278 of 492) to 21% (92 of 437) (adjusted odds ratio [OR] 0·2, 95% CI 0·15-0·27). Total loss to follow-up before initiation of antiretroviral treatment fell from 64% (314 of 492) to 33% (142 of 437) (OR 0·27, 95% CI 0·21-0·36) and the proportion of enrolled patients initiating antiretroviral therapy increased from 12% (57 of 492) to 22% (94 of 437) (OR 2·05, 95% CI 1·42-2·96). The median time from enrolment to antiretroviral therapy initiation reduced from 48 days to 20 days (p<0·0001), primarily because of a reduction in the median time taken to complete CD4 staging, which decreased from 32 days to 3 days (p<0·0001). Loss to follow-up between staging and antiretroviral therapy initiation did not change significantly (OR 0·84, 95% CI 0·49-1·45). Point-of-care CD4 testing enabled clinics to stage patients rapidly on-site after enrolment, which reduced opportunities for pretreatment loss to follow-up. As a result, more patients were identified as eligible for and initiated antiretroviral treatment. Point-of-care testing might therefore be an effective intervention to reduce pretreatment loss to follow-up. Absolute Return for Kids and UNITAID. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                J Int AIDS Soc
                J Int AIDS Soc
                Journal of the International AIDS Society
                The International AIDS Society
                1758-2652
                2012
                30 January 2012
                : 15
                : 3
                Affiliations
                [1 ]Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2198, Johannesburg, South Africa
                [2 ]Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Esselen Street, Hillbrow, 2198, Johannesburg, South Africa
                [3 ]National Health Laboratory Service of South Africa, 7 York Road, Parktown, 2198
                [4 ]Society for Family Health "New Start" HCT (HIV counselling and testing) programme, South Africa
                Article
                1758-2652-15-3
                10.1186/1758-2652-15-3
                3310849
                22284546
                81669172-9a42-4189-895e-a0fb17bfd172
                Copyright ©2012 Glencross et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research

                Infectious disease & Microbiology

                Comments

                Comment on this article