2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RIP3‐mediated necroptosis increases neuropathic pain via microglia activation: necrostatin‐1 has therapeutic potential

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuropathic pain (NP) is a clinical symptom that accompanies many diseases. We investigated the effect of receptor‐interacting protein kinase 3 (RIP3)‐regulated necroptosis on NP and explored its relationship with microglia, in order to provide a theoretical basis for further research and provide new insights into the treatment of NP. In this study, the spared nerve injury (SNI) model was used along with intervention with necrostatin and the inhibitor of necroptosis necrostatin‐1 (Nec‐1). Pain behavior tests were performed 1 and 3 days before the nerve injury (or sham) operation, and on days 1, 3, 5, 7, 10, and 14 after the operation. The spinal cord tissues were collected for detection of RIP3 expression and distribution, changes in the number of microglia cells, activation of necroptosis, and the level of proinflammatory factors. Collected spinal cord tissues were analyzed using western blot, immunohistochemistry, immunofluorescence, immunoprecipitation assays, and ELISA, respectively. We found that, compared with the sham group, the expression of RIP3 protein in the spinal cord of rats in the SNI group increased from 3 to 14 days after surgery. Immunofluorescence staining showed that RIP3 was coexpressed with the microglia and the number of microglia increased significantly in the SNI model group. The results of immunoprecipitation assays suggested that a RIP3‐mediated necroptosis pathway promotes NP. After treatment with Nec‐1, the expression of RIP3 protein and the number of microglia were significantly reduced, and the expression levels of TNF‐α, IL‐1β, and IL‐6 in spinal dorsal horns were significantly decreased. These results indicate that RIP3 promotes necroptosis to increase the occurrence of NP via microglia.

          Abstract

          Here, we report that receptor‐interacting protein kinase 3 (RIP3) is upregulated in a nerve injury (SNI) rat model, and the RIP3‐mediated necroptosis pathway promotes neuropathic pain (NP) in rats via microglia. Additionally, intrathecal injection of necrostatin‐1 reduces NP in SNI rats via regulation of microglia in the spinal cord and downregulation of proinflammatory factors. These results provide a theoretical basis for further research and provide new insights into the treatment of NP.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The molecular machinery of regulated cell death

          Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spared nerve injury: an animal model of persistent peripheral neuropathic pain.

            Peripheral neuropathic pain is produced by multiple etiological factors that initiate a number of diverse mechanisms operating at different sites and at different times and expressed both within, and across different disease states. Unraveling the mechanisms involved requires laboratory animal models that replicate as far as possible, the different pathophysiological changes present in patients. It is unlikely that a single animal model will include the full range of neuropathic pain mechanisms. A feature of several animal models of peripheral neuropathic pain is partial denervation. In the most frequently used models a mixture of intact and injured fibers is created by loose ligation of either the whole (Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988;33:87-107) or a tight ligation of a part (Seltzer Z, Dubner R, Shir Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990;43:205-218) of a large peripheral nerve, or a tight ligation of an entire spinal segmental nerve (Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992;50:355-363). We have developed a variant of partial denervation, the spared nerve injury model. This involves a lesion of two of the three terminal branches of the sciatic nerve (tibial and common peroneal nerves) leaving the remaining sural nerve intact. The spared nerve injury model differs from the Chung spinal segmental nerve, the Bennett chronic constriction injury and the Seltzer partial sciatic nerve injury models in that the co-mingling of distal intact axons with degenerating axons is restricted, and it permits behavioral testing of the non-injured skin territories adjacent to the denervated areas. The spared nerve injury model results in early ( 6 months), robust (all animals are responders) behavioral modifications. The mechanical (von Frey and pinprick) sensitivity and thermal (hot and cold) responsiveness is increased in the ipsilateral sural and to a lesser extent saphenous territories, without any change in heat thermal thresholds. Crush injury of the tibial and common peroneal nerves produce similar early changes, which return, however to baseline at 7-9 weeks. The spared nerve injury model may provide, therefore, an additional resource for unraveling the mechanisms responsible for the production of neuropathic pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases

              Apoptosis is crucial for the normal development of the nervous system, whereas neurons in the adult CNS are relatively resistant to this form of cell death. However, under pathological conditions, upregulation of death receptor family ligands, such as tumour necrosis factor (TNF), can sensitize cells in the CNS to apoptosis and a form of regulated necrotic cell death known as necroptosis that is mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL). Necroptosis promotes further cell death and neuroinflammation in the pathogenesis of several neurodegenerative diseases, including multiple sclerosis, amyotrophic lateral sclerosis, Parkinson disease and Alzheimer disease. In this Review, we outline the evidence implicating necroptosis in these neurological diseases and suggest that targeting RIPK1 might help to inhibit multiple cell death pathways and ameliorate neuroinflammation.
                Bookmark

                Author and article information

                Contributors
                lhlyjw@163.com
                Journal
                FEBS Open Bio
                FEBS Open Bio
                10.1002/(ISSN)2211-5463
                FEB4
                FEBS Open Bio
                John Wiley and Sons Inc. (Hoboken )
                2211-5463
                24 August 2021
                October 2021
                : 11
                : 10 ( doiID: 10.1002/feb4.v11.10 )
                : 2858-2865
                Affiliations
                [ 1 ] Department of Anesthesiology Ningbo Medical Treatment Center Lihuili Hospital China
                Author notes
                [*] [* ] Correspondence

                J. Wang, Department of Anesthesiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, Zhejiang 315040, China

                Tel: +86057487018726

                E‐mail: lhlyjw@ 123456163.com

                Author information
                https://orcid.org/0000-0003-3626-4617
                Article
                FEB413258
                10.1002/2211-5463.13258
                8487041
                34320280
                81cfa1e0-54db-461d-93fb-7c957ba19292
                © 2021 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 June 2021
                : 08 March 2021
                : 27 July 2021
                Page count
                Figures: 4, Tables: 0, Pages: 8, Words: 4770
                Funding
                Funded by: Natural Science Foundation of Ningbo , doi 10.13039/100007834;
                Award ID: 202003N4246
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                October 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.0.8 mode:remove_FC converted:02.10.2021

                microglia,necroptosis,necrostatin‐1,neuropathic pain,receptor‐interacting protein kinase 3

                Comments

                Comment on this article